J/ApJ/805/3    Profiles of clusters of galaxies from Chandra    (Elkholy+, 2015)

Are the effects of structure formation seen in the central metallicity of galaxy clusters? Elkholy T.Y., Bautz M.W., Canizares C.R. <Astrophys. J., 805, 3 (2015)> =2015ApJ...805....3E 2015ApJ...805....3E
ADC_Keywords: Clusters, galaxy ; X-ray sources ; Redshifts ; Abundances Keywords: galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters Abstract: A sample of 46 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy, and metallicity profiles, as well as other morphological measurements. The entropy profiles are computed to larger radii than in previous Chandra cluster sample analyses. We find that the iron mass fraction measured in the inner 0.15R500 shows a larger dispersion across the sample of low-mass clusters than it does for the sample of high-mass clusters. We interpret this finding as the result of the mixing of more halos in large clusters than in small clusters, leading to an averaging of the metallicity in the large clusters, and thus less dispersion of metallicity. This interpretation lends support to the idea that the low-entropy, metal-rich gas of merging halos reaches the clusters' centers, which explains observations of core-collapse supernova product metallicity peaks, and which is seen in hydrodynamical simulations. The gas in these merging halos would have to reach cluster centers without mixing in the outer regions. On the other hand, the metallicity dispersion does not change with mass in the outer regions of the clusters, suggesting that most of the outer metals originate from a source with a more uniform metallicity level, such as during pre-enrichment. We also measure a correlation between the metal content in low-mass clusters and the morphological disturbance of their intracluster medium, as measured by centroid shift. This suggests an alternative interpretation, whereby transitional metallicity boosts in the center of low-mass clusters account for the larger dispersion of their metallicities. Description: Our sample consists of bright clusters --present in both the HIFLUGCS (Reiprich+, 2002ApJ...567..716R 2002ApJ...567..716R) and ACCEPT (Cavagnolo+ 2009, J/ApJS/182/12) samples-- that were observed with Chandra's ACIS instrument out to at least 0.2R500, where R500 is the radius enclosing an average density that is 500 times the critical density of the universe at the redshift of the observed cluster. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 264 46 Chandra observations table6.dat 82 46 Cluster masses and scales table7.dat 65 46 Best-fit parameters of the electron density radial profiles table8.dat 84 46 Best-fit parameters of the temperature radial profiles table9.dat 52 46 Morphological parameters and entropy near the center table10.dat 54 46 Global metallicity measures -------------------------------------------------------------------------------- See also: B/chandra : The Chandra Archive Log (CXC, 1999-2014) VIII/76 : Leiden/Argentine/Bonn (LAB) Survey of Galactic HI (Kalberla+ 2005) J/A+A/575/A30 : HIFLUGCS XMM/Chandra cross-calibration (Schellenberger+, 2015) J/ApJ/774/23 : Chandra observations of SPT-SZ clusters (McDonald+, 2013) J/ApJS/199/23 : IR and UV star formation in ACCEPT BCGs (Hoffer+, 2012) J/ApJS/182/12 : ICM entropy profiles (ACCEPT) (Cavagnolo+, 2009) J/ApJS/174/117 : Properties and metal abundances of clusters (Maughan+, 2008) ftp://space.mit.edu/pub/tamer/ebc2015/ : This article available data http://astro.uni-bonn.de/~reiprich/act/gcs/ : T.H. Reiprich HIFLUGCS home page http://www.pa.msu.edu/astro/MC2/accept : Archive of Chandra Cluster Entropy Profile Tables Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- ID Cluster identifier 16- 26 A11 --- Label Label used to denote cluster 28- 29 I2 h RAh Cluster Hour of Right Ascension (J2000) 31- 32 I2 min RAm Cluster Minute of Right Ascension (J2000) 34- 39 F6.3 s RAs Cluster Second of Right Ascension (J2000) 41 A1 --- DE- Sign of the Cluster Declination (J2000) 42- 43 I2 deg DEd Cluster Degree of Declination (J2000) 45- 46 I2 arcmin DEm Cluster Arcminute of Declination (J2000) 48- 52 F5.2 arcsec DEs Cluster Arcsecond of Declination (J2000) 54- 59 F6.4 --- z [0.02/0.3] Cluster redshift 61-260 A200 --- ObsID Chandra ObsID(s) used in this work (1) 262-264 I3 ks Texp [8/437] Total exposure time for spectral analysis -------------------------------------------------------------------------------- Note (1): ObsIDs in parantheses were used in imaging analysis, and excluded from spectral analysis. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- ID Cluster identifier 16- 20 F5.2 keV kT [2.1/23.4] X-ray temperature measured between 0.15 and 1*R500 22- 25 F4.2 keV E_kT [0.01/2] Upper uncertainty in kx 27- 30 F4.2 keV e_kT [0.01/1] Lower uncertainty in kT 32- 36 F5.3 Mpc R500 [0.6/2.2] Radius enclosing 500 times critical density (2) 38- 42 F5.3 Mpc E_R500 [0.004/0.07] Upper uncertainty in R500 44- 48 F5.3 Mpc e_R500 [0.002/0.10] Lower uncertainty in R500 50- 55 F6.3 10+14Msun M500 [0.9/35.1] Total gravitational mass within R500 57- 60 F4.2 10+14Msun E_M500 [0.03/4] Upper uncertainty in M500 62- 65 F4.2 10+14Msun e_M500 [0.03/6] Lower uncertainty in M500 67- 72 F6.3 10+13Msun Mgas [0.7/43.2] Gass mass within R500 74- 77 F4.2 10+13Msun E_Mgas [0.03/2] Upper uncertainty in Mgas 79- 82 F4.2 10+13Msun e_Mgas [0.02/4] Lower uncertainty in Mgas -------------------------------------------------------------------------------- Note (2): Of the Universe at the redshift of the observed cluster. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- ID Cluster identifier 16- 24 F9.7 cm-3 n0 ? Density profile normalization n0 (3) 26- 33 F8.6 --- alpha [0/5]? Best-fit α parameter (3) 35- 40 F6.4 --- beta [0.01/5]? Best-fit β parameter (3) 42- 50 F9.6 Mpc rc [0.001/27.3]? Best-fit rc parameter (3) 52- 58 F7.5 Mpc rs [0.01/2.2]? Best-fit rs parameter (3) 60- 65 F6.4 --- eps [0.4/5]? Best-fit ε parameter (3) -------------------------------------------------------------------------------- Note (3): The ne(r) model is shown in Equation 1 (section 2.3.1): (ne(r)/n0)2 = (r/rc) / [ (1+(r/rc)2)3β-α/2 (1+(r/rs)3)ε/3 ] -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- ID Cluster identifier 16- 24 F9.6 Mpc rt [0.002/19.5]? Best-fit rt parameter (4) 26- 34 F9.6 --- a [-1.6/0.72]? Best-fit α parameter (4) 36- 43 F8.5 --- b [-0.53/7.9]? Best-fit b parameter (4) 45- 52 F8.5 --- c [-1.8/12]? Best-fit c parameter (4) 54- 60 F7.4 --- acool [-1.9/13]? Best-fit αcool parameter (4) 62- 69 F8.6 Mpc rcool [0.004/0.52]? Best-fit rcool parameter (4) 71- 77 F7.4 keV Tmin [0.3/19.3]? Best-fit Tmin parameter (4) 79- 84 F6.3 keV T0 [1.9/83.5]? Best-fit T0 parameter (4) -------------------------------------------------------------------------------- Note (4): The kT(r) model is shown in Equation 5 (section 2.3.2): T(r)/T0 = [(r/r1)/(1+(r/r1)b)c/b] [(x+Tmin/T0) / (x+1)], where x = (r/rcool)αcool -------------------------------------------------------------------------------- Byte-by-byte Description of file: table9.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- ID Cluster identifier 16- 20 F5.2 --- cSB [1.8/29.3] Surface brightness concentration 22- 26 F5.3 --- e_cSB [0.01/0.27] Uncertainty in cSB 28- 32 F5.1 keV.cm2 S40 [40.5/550] Entropy at 40 kpc radius 34- 38 F5.2 keV.cm2 E_S40 [0.2/69] Upper uncertainty in S40 40- 44 F5.2 keV.cm2 e_S40 [0.3/65] Lower uncertainty in S40 46- 51 F6.3 --- [0.5/19] Median centroid shift (5) 52 A1 --- f_ [d] Incomplete coverage (5) -------------------------------------------------------------------------------- Note (5): the median centroid shift is the size of of the scatter of the X-ray centroid measured within various apertures around the X-ray peak within 0.3R500, expressed in 10-3R500. d = A measurement in the observations where the FOV does not fully cover the region r<0.3*R500, and thus are excluded from analysis involving , but are shown here. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table10.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- ID Cluster identifier 16- 20 F5.3 --- Zmid [0.1/0.5] Gas-mass-weighted metallicity (6) 22- 27 F6.4 --- E_Zmid [0.009/0.1] Upper uncertainty in Zmid 29- 34 F6.4 --- e_Zmid [0.009/0.1] Lower uncertainty in Zmid 36- 40 F5.3 --- Zin [0.2/0.6] Bulk core cluster metallicity (7) 42- 47 F6.4 --- E_Zin [0.005/0.09] Upper uncertainty in Zin 49- 54 F6.4 --- e_Zin [0.005/0.08] Lower uncertainty in Zin -------------------------------------------------------------------------------- Note (6): In the region 0.15<r<0.3R500. See section 2.3.3 and equation 6. Note (7): In the region r<0.15R500. See section 2.3.3 and equation 8. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 03-Sep-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line