J/ApJ/808/194   Performance of exoplanet search space missions   (Leger+, 2015)

Impact of ηEarth on the capabilities of affordable space missions to detect biosignatures on extrasolar planets. Leger A., Defrere D., Malbet F., Labadie L., Absil O. <Astrophys. J., 808, 194 (2015)> =2015ApJ...808..194L 2015ApJ...808..194L (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Stars, distances ; Spectral types ; Magnitudes ; Planets Keywords: astrobiology; instrumentation: high angular resolution; instrumentation: interferometers; instrumentation: miscellaneous; planets and satellites: terrestrial planets Abstract: We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4m primary mirror, and formation-flying interferometers with 4x0.75m collecting mirrors. The numbers of accessible planets are calculated as a function of ηEarth. When Kepler gives its final estimation for ηEarth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, ηEarth=10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest. Description: The selected target list is specific to each instrument. Starting from the list of the nearest stars, the first step is to select the sub-sample that can be observed with each instrument. For both types of coronagraphs, there is no M star, because the HZ around these stars is seen at too small an angle, around 20 to 60mas for the nearest M stars (Table 8), whereas the inner working angle (IWA) is 170mas for the built-in coronagraph with Φ=2.4m, IWA=2.5λ/Φ, and λ=0.8um; or 115mas for a 34m starshade. For the interferometer, the target list comprises both M stars and solar-type (FGK) stars due to adjustable baseline length. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 88 200 Integration times divided by c for FGK stars table3.dat 89 100 Possible target list for a 2.4m coronagraph table7.dat 89 100 Integration times divided by d for G stars table8.dat 84 180 M stars for 1yr observations with a 4x0.75m interferometer table9.dat 89 200 FGK stars for 4yr observations with a 4x0.75m interferometer -------------------------------------------------------------------------------- See also: I/311 : Hipparcos, the New Reduction (van Leeuwen, 2007) J/ApJ/799/180 : Radii of KOI Earth- to Neptune-sized planets (Silburt+, 2015) J/A+A/567/A133 : Habitable zone code (Valle+, 2014) J/ApJ/771/L45 : 3D climate models for exoplanet around M-star (Yang+, 2013) J/ApJ/770/90 : Candidate planets in the habitable zones (Gaidos, 2013) J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013) J/A+A/549/A109 : HARPS XXXI. The M-dwarf sample (Bonfils+, 2013) J/ApJ/736/L25 : Habitability of Kepler planetary cand. (Kaltenegger+, 2011) J/ApJ/736/19 : Kepler planetary candidates. II. (Borucki+, 2011) J/ApJ/716/1336 : Stability analysis of single-planet (Kopparapu+, 2010) J/A+A/505/859 : M dwarfs radial velocities (Zechmeister+, 2009) http://exep.jpl.nasa.gov/exnps/index.html : ExNPS report http://wfirst.gsfc.nasa.gov/ : Wide-Field IR Survey Telescope webpage http://www.esa.int/Our_Activities/Space_Engineering_Technology/Proba_Missions/ : Proba Missions home page Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- HIP [171/120005] Hipparcos identifier 8- 26 A19 --- Name Common identifier 28- 32 F5.2 pc Dist [1.2/15] Distance 34- 38 F5.2 mag Vmag [-1.5/10] Apparent V band magnitude 40- 46 F7.3 solLum LBol [0.004/235.4] Bolometric luminosity 48- 57 A10 --- SpT MK spectral type 59- 66 E8.2 --- rho Transmission at HZ angle 68- 75 E8.2 yr t/c Integration time divided by c (1) 77- 79 I3 --- i [1/200] Target rank 81- 88 E8.2 yr St/c Cumulative time divided by c (1) -------------------------------------------------------------------------------- Note (1): Where c is a parameter of the model. Fitting to Lunine et al. (2009; arXiv:0808.2754v3) yields c=2.81e8yr. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- HIP [746/116771] Hipparcos identifier 8- 24 A17 --- Name Common identifier 26- 30 F5.2 pc Dist [1.2/26.2] Distance 32- 36 F5.2 mag Vmag [-1.5/6] Apparent V band magnitude 38- 43 F6.3 solLum LBol [0.09/61] Bolometric luminosity 45- 58 A14 --- SpT MK spectral type 60- 67 E8.2 --- rho Transmission at HZ angle 69- 76 E8.2 yr t [0.05/568] Required integration time 78- 80 I3 --- i [1/100] Target rank 82- 89 E8.2 yr St [0.05/17500] Cumulative time -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- HIP [171/113357] Hipparcos identifier 8- 22 A15 --- Name Common identifier 24- 28 F5.1 arcsec Sep [10/137]? Double star separation 30 A1 --- f_Sep [b] b: Indicates Sep is for the year 2030 32- 36 F5.2 pc Dist [1.2/18] Distance 38- 40 I3 mas HZ [12/984] Angular distance between mean HZ and star 42- 46 F5.2 mag Vmag [-0.01/10] Apparent V band magnitude 48- 51 F4.2 solLum LBol [0.04/9.6] Bolometric luminosity 53- 62 A10 --- SpT MK spectral type 64- 67 I4 --- Teff [4898/6602] Effective temperature 69- 76 E8.2 yr t/d [1/8540] Integration time divided by d (1) 78- 80 I3 --- i [1/100] Target rank 82- 89 E8.2 yr St/d [1.4/430000] Cumulative time divided by d (1) -------------------------------------------------------------------------------- Note (1): Where d is a parameter of the model. Fitting to Defrere et al. (2010A&A...509A...9D 2010A&A...509A...9D) yields d=3.4e-5yr. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- HIP [428/118212] Hipparcos identifier 8- 21 A14 --- Name Common name 23- 27 F5.2 pc Dist [1.3/20] Distance 29- 33 F5.2 mag Vmag [5.5/11.7] Apparent V band magnitude 35- 42 E8.2 solLum LBol [0.0008/3.5] Bolometric luminosity 44- 48 F5.1 mas HZ [20/133] Angular distance between mean HZ and star 50- 57 A8 --- SpT MK spectral type 59- 62 I4 K Teff [2425/6504] Effective temperature 64- 71 E8.2 yr t [0.001/66] Required integration time 73- 75 I3 --- i [1/180] Target rank 77- 84 E8.2 yr St [0.001/2360] Cumulative time -------------------------------------------------------------------------------- Byte-by-byte Description of file: table9.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- HIP [169/120005] Hipparcos identifier 8- 21 A14 --- Name Common identifier 23- 27 F5.1 arcsec Sep [10/400]? Companion separation (1) 29- 33 F5.2 pc Dist [1/16] Distance 35- 37 I3 mas HZ [6/984] Angular distance between mean HZ and star 39- 43 F5.2 mag Vmag [-0.01/12.2] Apparent V band magnitude 45- 49 F5.2 solLum LBol [0.01/12] Bolometric luminosity 51- 62 A12 --- SpT MK spectral type 64- 67 I4 K Teff [3335/7109] Effective temperature 69- 71 I3 --- i [1/200] Target rank 73- 80 E8.2 yr t [0.002/26.2] Required integration time 82- 89 E8.2 yr St [0.002/2370] Cumulative time -------------------------------------------------------------------------------- Note (1): α Cen is triple system. The angular separation between A or B to proxima Cen is 2030". -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 04-Dec-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line