J/ApJ/811/117 R-band PTF observations of SNe IIb (Strotjohann+, 2015)
Search for precursor eruptions among type IIb supernovae.
Strotjohann N.L., Ofek E.O., Gal-Yam A., Sullivan M., Kulkarni S.R.,
Shaviv N.J., Fremling C., Kasliwal M.M., Nugent P.E., Cao Y., Arcavi I.,
Sollerman J., Filippenko A.V., Yaron O., Laher R., Surace J.
<Astrophys. J., 811, 117 (2015)>
=2015ApJ...811..117S 2015ApJ...811..117S (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Photometry, VRI ; Redshifts
Keywords: stars: mass-loss; supernovae: general;
supernovae: individual: (SN2011dh, SN2012P, SN2012cs, SN2013bb)
Abstract:
The progenitor stars of several Type IIb supernovae (SNe) show
indications of extended hydrogen envelopes. These envelopes might be
the outcome of luminous energetic pre-explosion events, so-called
precursor eruptions. We use the Palomar Transient Factory (PTF)
pre-explosion observations of a sample of 27 nearby SNe IIb to look
for such precursors during the final years prior to the SN explosion.
No precursors are found when combining the observations in 15-day
bins, and we calculate the absolute-magnitude-dependent upper limit on
the precursor rate. At the 90% confidence level, SNe IIb have on
average <0.86 precursors as bright as an absolute R-band magnitude of
-14 in the final 3.5 years before the explosion and <0.56 events over
the final year. In contrast, precursors among SNe IIn have a ≳5 times
higher rate. The kinetic energy required to unbind a low-mass stellar
envelope is comparable to the radiated energy of a few-weeks-long
precursor that would be detectable for the closest SNe in our sample.
Therefore, mass ejections, if they are common in such SNe, are
radiatively inefficient or have durations longer than months. Indeed,
when using 60-day bins, a faint precursor candidate is detected prior
to SN 2012cs (∼2% false-alarm probability). We also report the
detection of the progenitor of SN 2011dh that does not show detectable
variability over the final two years before the explosion. The
suggested progenitor of SN 2012P is still present, and hence is likely
a compact star cluster or an unrelated object.
Description:
The observations used here were obtained with the 48 inch Oschin
Schmidt telescope at Palomar Observatory (P48), as part of the Palomar
Transient Factory (PTF) project.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 120 28 Supernova sample
table2.dat 73 3247 PTF observations
table4.dat 32 378 Precursor search control time
--------------------------------------------------------------------------------
See also:
II/313 : Palomar Transient Factory (PTF) photometric catalog 1.0 (Ofek+, 2012)
J/A+A/580/A142 : SN 2011dh. The first two years (Ergon+, 2015)
J/A+A/562/A17 : SN 2011dh - The first 100 days (Ergon+, 2014)
J/other/Nat/494.65 : SN 2010mc outburst before explosion (Ofek+, 2013)
J/ApJ/778/L19 : SN 2011dh (type IIb) 3.6 & 4.5um light curves (Helou+, 2013)
J/other/PZ/32.6 : UBVRI light curves of SN 2011dh (Tsvetkov+, 2012)
J/ApJ/742/L18 : Follow-up photometry of the SN IIb PTF 11eon (Arcavi+, 2011)
J/other/PZ/29.2 : SN 2008ax UBVRI light curves (Tsvetkov+, 2009)
J/ApJ/696/870 : Catalina Real-time Transient Survey (CRTS) (Drake+, 2009)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- l_Name [l] l: SN added to our sample
from the literature
3- 10 A8 --- Name SN identifier
12- 19 A8 --- PTF Other PTF name
21- 30 F10.6 deg RAdeg Right ascension in decimal degrees (J2000)
32- 41 F10.6 deg DEdeg Declination in decimal degrees (J2000)
43- 50 F8.6 --- z [0.0016/0.05] SN redshift obtained from
spectroscopy
52- 56 F5.2 mag DM [29.4/36.8] Distance modulus (1)
58- 62 F5.3 mag E(B-V) [0.01/0.2] Galactic extinction taken from
Schlegel et al. (1998ApJ...500..525S 1998ApJ...500..525S)
64- 68 F5.1 mag RMag ? Absolute R-band magnitude of the brightest
detection (MR,peak)
69 A1 --- f_RMag [*] *: peak is not well observed and the SN
might be considerably brighter
71- 75 I5 d t0 [55079/56713] MJD of the approximate
explosion date (t0) (2)
77- 81 I5 d tpk ? MJD of the brightest detection (tpeak) (3)
83- 87 F5.3 --- FAP [0/0.97] False-alarm probability (4)
89 A1 --- DP Two peaks in the light curve? (5)
91 A1 --- l_tper Limit flag on tper
92- 96 I5 d tper The chosen reference period (6)
98-120 A23 --- Ref Reference(s) (7)
--------------------------------------------------------------------------------
Note (1): DM, the distance modulus, is derived from the redshift with
H0=69.33km/s/Mpc, and ΩM=0.24, and ΩΛ=0.71
(Hinshaw et al. 2013ApJS..208...19H 2013ApJS..208...19H). The only exceptions are the
three closest SNe and SN 2012cs, where redshift-independent distance
measurements of the host galaxies are available on NED.
Note (2): t0 is the MJD of the approximate explosion date estimated by picking
a date between the last nondetection and the first detection; thus,
for some SNe the uncertainty in t0 can be many days.
Note (3): tpk is the MJD of the brightest detection, where only the second
peak is considered in the case of a double-peaked light curve.
Note (4): FAP, the false-alarm probability, is the probability of detecting a
false precursor candidate by coadding images in 15-day bins as
estimated using the bootstrap method (see Section 4.1).
Note (5): SNe for two peaks observed in the light curve are marked with a "y".
Note (6): For every SN, a reference period containing at least 20 observations
is chosen. If possible, we use data well after the SN has faded to
construct the reference image, but when no such data are available,
we instead resort to the oldest pre-explosion images.
For PTF 13ajn, a considerable number of observations were acquired
with two CCDs, and we hence define two different reference periods.
Note (7): Reference as follows:
A10 = Arcavi et al. (2010ApJ...721..777A 2010ApJ...721..777A)
D09 = Drake et al. (2009CBET.2101....1D 2009CBET.2101....1D)
A11 = Arcavi et al. (2011, J/ApJ/742/L18)
G11 = Griga et al. (2011CBET.2736....1G 2011CBET.2736....1G)
CM11 = Ciabattari & Mazzoni (2011CBET.2887....1C 2011CBET.2887....1C)
GY11 = Gal-Yam et al. (2011ATel.3739....1G 2011ATel.3739....1G)
MB11 = Marion & Berlind (2011CBET.2894....1M 2011CBET.2894....1M)
T11 = Tomasella et al. (2011CBET.2887....3T 2011CBET.2887....3T)
A12 = Arcavi et al. (2012ATel.3881....1A 2012ATel.3881....1A)
BN12 = Borsato & Nascimbeni (2012CBET.2993....2B 2012CBET.2993....2B)
D12 = Dimai et al. (2012CBET.2993....1D 2012CBET.2993....1D)
H12 = Howerton et al. (2012CBET.3235....1H 2012CBET.3235....1H)
T12 = Turatto et al. (2012ATel.4386....1T 2012ATel.4386....1T)
H13 = Howerton et al. (2013CBET.3466....1H 2013CBET.3466....1H)
ER13 = Elias-Rosa et al. (2013ATel.4957....1E 2013ATel.4957....1E)
GY14 = Gal-Yam et al. (2014Natur.509..471G 2014Natur.509..471G)
B11 = Blanchard et al. (2011CBET.2772....1B 2011CBET.2772....1B)
P11 = Parrent et al. (2011CBET.2772....2P 2011CBET.2772....2P)
C12 = Chen et al. (2012CBET.3043....1C 2012CBET.3043....1C)
J12 = Jha et al. (2012ATel.4491....1J 2012ATel.4491....1J)
N12 = Newton et al. (2012CBET.3035....1N 2012CBET.3035....1N)
R12 = Rich et al. (2012CBET.3143....1R 2012CBET.3143....1R)
Ha12 = Hadjiyska et al. (2012ATel.4563....1H 2012ATel.4563....1H)
LG12 = Le Guillou et al. (2012ATel.4673....1L 2012ATel.4673....1L)
C13 = Ciabattari et al. (2013CBET.3557....1C 2013CBET.3557....1C)
VD13 = Van Dyk et al. (2013ATel.5139....1V 2013ATel.5139....1V)
VD14 = Van Dyk et al. (2014AJ....147...37V 2014AJ....147...37V)
MG14 = Morales-Garoffolo et al. (2014MNRAS.445.1647M 2014MNRAS.445.1647M)
BA15 = Ben-Ami et al. (2015ApJ...803...40B 2015ApJ...803...40B)
C14 = Campbell et al. (2014ATel.5937....1C 2014ATel.5937....1C)
Blank values for SN reported here for the first time.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- Name SN identifier
10 A1 --- Filt [R] Filter used in the observation (R)
12- 22 F11.5 d Delt [-1369/11.1] Time since approximate explosion
date (G1)
24- 34 F11.5 d MJD Modified Julian date
36- 41 F6.3 mag mag [12.9/85.3] Observed PTF magnitude in Filt (1)
43- 50 F8.3 mag e_mag [-526/680]? Error in mag;
blank for an "Inf" value
52- 57 F6.3 mag Limmag [17.5/22.1] The 3σ limiting magnitude
59- 66 F8.1 ct Flux [-2748/401896] Observed counts
68- 73 F6.1 ct e_Flux [32/2030] Error in Flux
--------------------------------------------------------------------------------
Note (1): Magnitudes are calculated as "asinh magnitudes"
(Lupton et al. 1999AJ....118.1406L 1999AJ....118.1406L),
and have a meaning only when smaller than the limiting magnitude.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- Name SN identifier
10- 16 F7.1 d Delt [-1367/-2.5] Mean time since approximate
explosion date (G1)
18- 22 F5.2 mag Rmag [16.6/23.4] Apparent limiting PTF R band
magnitude (1)
24- 29 F6.2 mag RMag [-18.6/-6.9] Absolute limiting PTF R band
magnitude (1)
31- 32 I2 --- o_Rmag Number of measurements in Rmag
--------------------------------------------------------------------------------
Note (1): Down to which precursors can be excluded. The limiting magnitudes are
at the 5σ level estimated from Poisson errors for bins with
less than 6 observations and with the bootstrap method otherwise
(Section 4.1).
--------------------------------------------------------------------------------
Global note:
Note (G1): Estimated by picking a date between the last nondetection and the
first detection, see Table 1.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 18-Jan-2016