J/ApJ/811/117      R-band PTF observations of SNe IIb      (Strotjohann+, 2015)

Search for precursor eruptions among type IIb supernovae. Strotjohann N.L., Ofek E.O., Gal-Yam A., Sullivan M., Kulkarni S.R., Shaviv N.J., Fremling C., Kasliwal M.M., Nugent P.E., Cao Y., Arcavi I., Sollerman J., Filippenko A.V., Yaron O., Laher R., Surace J. <Astrophys. J., 811, 117 (2015)> =2015ApJ...811..117S 2015ApJ...811..117S (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Photometry, VRI ; Redshifts Keywords: stars: mass-loss; supernovae: general; supernovae: individual: (SN2011dh, SN2012P, SN2012cs, SN2013bb) Abstract: The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of -14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a ≳5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object. Description: The observations used here were obtained with the 48 inch Oschin Schmidt telescope at Palomar Observatory (P48), as part of the Palomar Transient Factory (PTF) project. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 120 28 Supernova sample table2.dat 73 3247 PTF observations table4.dat 32 378 Precursor search control time -------------------------------------------------------------------------------- See also: II/313 : Palomar Transient Factory (PTF) photometric catalog 1.0 (Ofek+, 2012) J/A+A/580/A142 : SN 2011dh. The first two years (Ergon+, 2015) J/A+A/562/A17 : SN 2011dh - The first 100 days (Ergon+, 2014) J/other/Nat/494.65 : SN 2010mc outburst before explosion (Ofek+, 2013) J/ApJ/778/L19 : SN 2011dh (type IIb) 3.6 & 4.5um light curves (Helou+, 2013) J/other/PZ/32.6 : UBVRI light curves of SN 2011dh (Tsvetkov+, 2012) J/ApJ/742/L18 : Follow-up photometry of the SN IIb PTF 11eon (Arcavi+, 2011) J/other/PZ/29.2 : SN 2008ax UBVRI light curves (Tsvetkov+, 2009) J/ApJ/696/870 : Catalina Real-time Transient Survey (CRTS) (Drake+, 2009) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 A1 --- l_Name [l] l: SN added to our sample from the literature 3- 10 A8 --- Name SN identifier 12- 19 A8 --- PTF Other PTF name 21- 30 F10.6 deg RAdeg Right ascension in decimal degrees (J2000) 32- 41 F10.6 deg DEdeg Declination in decimal degrees (J2000) 43- 50 F8.6 --- z [0.0016/0.05] SN redshift obtained from spectroscopy 52- 56 F5.2 mag DM [29.4/36.8] Distance modulus (1) 58- 62 F5.3 mag E(B-V) [0.01/0.2] Galactic extinction taken from Schlegel et al. (1998ApJ...500..525S 1998ApJ...500..525S) 64- 68 F5.1 mag RMag ? Absolute R-band magnitude of the brightest detection (MR,peak) 69 A1 --- f_RMag [*] *: peak is not well observed and the SN might be considerably brighter 71- 75 I5 d t0 [55079/56713] MJD of the approximate explosion date (t0) (2) 77- 81 I5 d tpk ? MJD of the brightest detection (tpeak) (3) 83- 87 F5.3 --- FAP [0/0.97] False-alarm probability (4) 89 A1 --- DP Two peaks in the light curve? (5) 91 A1 --- l_tper Limit flag on tper 92- 96 I5 d tper The chosen reference period (6) 98-120 A23 --- Ref Reference(s) (7) -------------------------------------------------------------------------------- Note (1): DM, the distance modulus, is derived from the redshift with H0=69.33km/s/Mpc, and ΩM=0.24, and ΩΛ=0.71 (Hinshaw et al. 2013ApJS..208...19H 2013ApJS..208...19H). The only exceptions are the three closest SNe and SN 2012cs, where redshift-independent distance measurements of the host galaxies are available on NED. Note (2): t0 is the MJD of the approximate explosion date estimated by picking a date between the last nondetection and the first detection; thus, for some SNe the uncertainty in t0 can be many days. Note (3): tpk is the MJD of the brightest detection, where only the second peak is considered in the case of a double-peaked light curve. Note (4): FAP, the false-alarm probability, is the probability of detecting a false precursor candidate by coadding images in 15-day bins as estimated using the bootstrap method (see Section 4.1). Note (5): SNe for two peaks observed in the light curve are marked with a "y". Note (6): For every SN, a reference period containing at least 20 observations is chosen. If possible, we use data well after the SN has faded to construct the reference image, but when no such data are available, we instead resort to the oldest pre-explosion images. For PTF 13ajn, a considerable number of observations were acquired with two CCDs, and we hence define two different reference periods. Note (7): Reference as follows: A10 = Arcavi et al. (2010ApJ...721..777A 2010ApJ...721..777A) D09 = Drake et al. (2009CBET.2101....1D 2009CBET.2101....1D) A11 = Arcavi et al. (2011, J/ApJ/742/L18) G11 = Griga et al. (2011CBET.2736....1G 2011CBET.2736....1G) CM11 = Ciabattari & Mazzoni (2011CBET.2887....1C 2011CBET.2887....1C) GY11 = Gal-Yam et al. (2011ATel.3739....1G 2011ATel.3739....1G) MB11 = Marion & Berlind (2011CBET.2894....1M 2011CBET.2894....1M) T11 = Tomasella et al. (2011CBET.2887....3T 2011CBET.2887....3T) A12 = Arcavi et al. (2012ATel.3881....1A 2012ATel.3881....1A) BN12 = Borsato & Nascimbeni (2012CBET.2993....2B 2012CBET.2993....2B) D12 = Dimai et al. (2012CBET.2993....1D 2012CBET.2993....1D) H12 = Howerton et al. (2012CBET.3235....1H 2012CBET.3235....1H) T12 = Turatto et al. (2012ATel.4386....1T 2012ATel.4386....1T) H13 = Howerton et al. (2013CBET.3466....1H 2013CBET.3466....1H) ER13 = Elias-Rosa et al. (2013ATel.4957....1E 2013ATel.4957....1E) GY14 = Gal-Yam et al. (2014Natur.509..471G 2014Natur.509..471G) B11 = Blanchard et al. (2011CBET.2772....1B 2011CBET.2772....1B) P11 = Parrent et al. (2011CBET.2772....2P 2011CBET.2772....2P) C12 = Chen et al. (2012CBET.3043....1C 2012CBET.3043....1C) J12 = Jha et al. (2012ATel.4491....1J 2012ATel.4491....1J) N12 = Newton et al. (2012CBET.3035....1N 2012CBET.3035....1N) R12 = Rich et al. (2012CBET.3143....1R 2012CBET.3143....1R) Ha12 = Hadjiyska et al. (2012ATel.4563....1H 2012ATel.4563....1H) LG12 = Le Guillou et al. (2012ATel.4673....1L 2012ATel.4673....1L) C13 = Ciabattari et al. (2013CBET.3557....1C 2013CBET.3557....1C) VD13 = Van Dyk et al. (2013ATel.5139....1V 2013ATel.5139....1V) VD14 = Van Dyk et al. (2014AJ....147...37V 2014AJ....147...37V) MG14 = Morales-Garoffolo et al. (2014MNRAS.445.1647M 2014MNRAS.445.1647M) BA15 = Ben-Ami et al. (2015ApJ...803...40B 2015ApJ...803...40B) C14 = Campbell et al. (2014ATel.5937....1C 2014ATel.5937....1C) Blank values for SN reported here for the first time. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name SN identifier 10 A1 --- Filt [R] Filter used in the observation (R) 12- 22 F11.5 d Delt [-1369/11.1] Time since approximate explosion date (G1) 24- 34 F11.5 d MJD Modified Julian date 36- 41 F6.3 mag mag [12.9/85.3] Observed PTF magnitude in Filt (1) 43- 50 F8.3 mag e_mag [-526/680]? Error in mag; blank for an "Inf" value 52- 57 F6.3 mag Limmag [17.5/22.1] The 3σ limiting magnitude 59- 66 F8.1 ct Flux [-2748/401896] Observed counts 68- 73 F6.1 ct e_Flux [32/2030] Error in Flux -------------------------------------------------------------------------------- Note (1): Magnitudes are calculated as "asinh magnitudes" (Lupton et al. 1999AJ....118.1406L 1999AJ....118.1406L), and have a meaning only when smaller than the limiting magnitude. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name SN identifier 10- 16 F7.1 d Delt [-1367/-2.5] Mean time since approximate explosion date (G1) 18- 22 F5.2 mag Rmag [16.6/23.4] Apparent limiting PTF R band magnitude (1) 24- 29 F6.2 mag RMag [-18.6/-6.9] Absolute limiting PTF R band magnitude (1) 31- 32 I2 --- o_Rmag Number of measurements in Rmag -------------------------------------------------------------------------------- Note (1): Down to which precursors can be excluded. The limiting magnitudes are at the 5σ level estimated from Poisson errors for bins with less than 6 observations and with the bootstrap method otherwise (Section 4.1). -------------------------------------------------------------------------------- Global note: Note (G1): Estimated by picking a date between the last nondetection and the first detection, see Table 1. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 18-Jan-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line