J/ApJ/812/174 Collision strengths in FeIX (Tayal+, 2015)
Thermally averaged collision strengths for extreme-ultraviolet line of Fe IX.
Tayal S.S., Zatsarinny O.
<Astrophys. J., 812, 174 (2015)>
=2015ApJ...812..174T 2015ApJ...812..174T (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Models
Keywords: atomic data; atomic processes; line: formation
Abstract:
Collision strengths and thermally averaged collision strengths for a
large number of extreme-ultraviolet lines of FeIX arising by electron
impact have been reported. The thermally averaged collision strengths
are calculated at electron temperatures in the range 104-107K for
the 122043 forbidden and allowed transitions between the 370
fine-structure levels. The atomic parameters for FeIX play an
important role in modeling of various astrophysical plasmas, including
especially the solar corona. The B-spline Breit-Pauli R-matrix method
has been used in the calculation of collision strengths. The target
wave functions and transition probabilities have been determined by
combining the multiconfiguration Hartree-Fock method with the B-spline
box-based multichannel expansions. We have included 370 fine-structure
levels of FeIX in the energy region up to 3s23p55s states. The
close-coupling expansion includes levels of the 3s23p6,
3s23p53d, 4l, 5s, 3s3p63d, 4s, 4p, 3s23p43d2, 3s3p53d2
configurations and some low-lying levels of the 3s23p33d3
configuration in our collision strengths and transition probabilities
calculations. There is a good agreement with the previous R-matrix
collision strength calculations by Storey et al. (2002, J/A+A/394/753)
and Del Zanna et al. (2014, J/A+A/565/A77) for transitions between the
lowest 17 levels of the 3s23p6, 3s23p53d and 3s3p63d
configurations, especially for electron temperatures logT(K)≥5.0. The
transitions between the first 17 levels are dominated by Rydberg
series of resonances converging to the levels of the 3s23p43d2
configuration. The present results and the calculation of Del Zanna et
al. show significant differences for many weaker forbidden and
intercombination transitions with thermally averaged collision
strengths smaller than 0.01.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 111 370 Comparison of target level energies with other
calculations and excitation levels lifetime
table3.dat 45 15093 Line strengths, oscillator strengths, and
transition probabilities for E1 transitions in FeIX
table6.dat 97 68265 Effective collision strengths for fine-structure
transitions in FeIX
--------------------------------------------------------------------------------
See also:
J/A+A/565/A77 : Atomic data for FeIX (Del Zanna+, 2014)
J/A+A/537/A22 : Atomic data for X-ray lines of FeVIII & FeIX (O'Dwyer+, 2012)
J/ApJ/743/206 : Effective collision strengths of FeVIII (Tayal+, 2011)
J/ApJ/740/L52 : FeIX energy levels (Foster+, 2011)
J/A+A/460/331 : Fe IX radiative and excitation rates (Aggarwal+, 2006)
J/ApJS/164/297 : New relativistic atomic data for Fe IX (Verma+, 2006)
J/A+A/394/753 : IRON Project. LI. (Storey+, 2002)
J/A+A/410/359 : Radiative and Auger decay for Fe II-Fe IX (Palmeri+, 2003)
http://www.chiantidatabase.org/ : The CHIANTI atomic database
http://www.nist.gov/pml/data/asd.cfm : NIST atomic spectra database
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- i [1/370] Lower level index
5- 44 A40 --- Level Level designation
46- 51 F6.2 eV Expt [0/170.2]? NIST experimental target level energy
53 A1 --- f_Expt [efg] Flag Expt (1)
55- 60 F6.2 eV This [0/179.1] This work's target level energy
62- 66 F5.2 eV Diff-This [-1/2]? Difference between this work and NIST
68- 73 F6.2 eV DZ14 [0/177]? DZ14 target level energy (2)
75- 78 F4.2 eV Diff-DZ14 [0/9]? Difference between DZ14 and NIST
80- 85 F6.2 eV A06 [0/170.9]? A06 target level energy (2)
87- 90 F4.2 eV Diff-A06 [0/6]? Difference between A06 and NIST
92- 97 F6.2 eV S02 [0/175.5]? S02 target level energy (2)
99-102 F4.2 eV Diff-S02 [0/6]? Difference between S02 and NIST
104-111 E8.2 s tau [0/578]? Excitation level lifetime
--------------------------------------------------------------------------------
Note (1): Flag as follows:
e = Young (2009ApJ...691L..77Y 2009ApJ...691L..77Y);
f = Young & Landi (2009ApJ...707..173Y 2009ApJ...707..173Y);
g = Tentative assignment by Del Zanna et al (2014, J/A+A/565/A77D).
Note (2):
DZ14 = Del Zanna et al. (2014, J/A+A/565/A77D);
A06 = Aggarwal et al (2006, J/A+A/460/331);
S02 = Storey et al (2002, J/A+A/394/753).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- i [1/302] Lower level index
5- 7 I3 --- k [3/370] Upper level index
9- 18 F10.2 0.1nm lambda [72.2/7341923.5] Wavelength; in Angstroms
20- 27 E8.2 --- S [0/98] Line strength
29- 36 E8.2 --- fik [0/3.1] Oscillator strength
38- 45 E8.2 s-1 Aki Transition probability
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- i [1/369] Lower level index
5- 7 I3 --- k [2/370] Upper level index
9- 16 E8.2 --- CS0.5 Effective collision strength at 0.5E4K
18- 25 E8.2 --- CS1.0 Effective collision strength at 1.0E4K
27- 34 E8.2 --- CS2.5 Effective collision strength at 2.5E4K
36- 43 E8.2 --- CS5.0 Effective collision strength at 5.0E4K
45- 52 E8.2 --- CS10 Effective collision strength at 1.0E5K
54- 61 E8.2 --- CS25 Effective collision strength at 2.5E5K
63- 70 E8.2 --- CS50 Effective collision strength at 5.0E5K
72- 79 E8.2 --- CS100 Effective collision strength at 1.0E6K
81- 88 E8.2 --- CS250 Effective collision strength at 2.5E6K
90- 97 E8.2 --- CS500 Effective collision strength at 5.0E6K
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 09-Feb-2016