J/ApJ/812/174             Collision strengths in FeIX             (Tayal+, 2015)

Thermally averaged collision strengths for extreme-ultraviolet line of Fe IX. Tayal S.S., Zatsarinny O. <Astrophys. J., 812, 174 (2015)> =2015ApJ...812..174T 2015ApJ...812..174T (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Models Keywords: atomic data; atomic processes; line: formation Abstract: Collision strengths and thermally averaged collision strengths for a large number of extreme-ultraviolet lines of FeIX arising by electron impact have been reported. The thermally averaged collision strengths are calculated at electron temperatures in the range 104-107K for the 122043 forbidden and allowed transitions between the 370 fine-structure levels. The atomic parameters for FeIX play an important role in modeling of various astrophysical plasmas, including especially the solar corona. The B-spline Breit-Pauli R-matrix method has been used in the calculation of collision strengths. The target wave functions and transition probabilities have been determined by combining the multiconfiguration Hartree-Fock method with the B-spline box-based multichannel expansions. We have included 370 fine-structure levels of FeIX in the energy region up to 3s23p55s states. The close-coupling expansion includes levels of the 3s23p6, 3s23p53d, 4l, 5s, 3s3p63d, 4s, 4p, 3s23p43d2, 3s3p53d2 configurations and some low-lying levels of the 3s23p33d3 configuration in our collision strengths and transition probabilities calculations. There is a good agreement with the previous R-matrix collision strength calculations by Storey et al. (2002, J/A+A/394/753) and Del Zanna et al. (2014, J/A+A/565/A77) for transitions between the lowest 17 levels of the 3s23p6, 3s23p53d and 3s3p63d configurations, especially for electron temperatures logT(K)≥5.0. The transitions between the first 17 levels are dominated by Rydberg series of resonances converging to the levels of the 3s23p43d2 configuration. The present results and the calculation of Del Zanna et al. show significant differences for many weaker forbidden and intercombination transitions with thermally averaged collision strengths smaller than 0.01. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 111 370 Comparison of target level energies with other calculations and excitation levels lifetime table3.dat 45 15093 Line strengths, oscillator strengths, and transition probabilities for E1 transitions in FeIX table6.dat 97 68265 Effective collision strengths for fine-structure transitions in FeIX -------------------------------------------------------------------------------- See also: J/A+A/565/A77 : Atomic data for FeIX (Del Zanna+, 2014) J/A+A/537/A22 : Atomic data for X-ray lines of FeVIII & FeIX (O'Dwyer+, 2012) J/ApJ/743/206 : Effective collision strengths of FeVIII (Tayal+, 2011) J/ApJ/740/L52 : FeIX energy levels (Foster+, 2011) J/A+A/460/331 : Fe IX radiative and excitation rates (Aggarwal+, 2006) J/ApJS/164/297 : New relativistic atomic data for Fe IX (Verma+, 2006) J/A+A/394/753 : IRON Project. LI. (Storey+, 2002) J/A+A/410/359 : Radiative and Auger decay for Fe II-Fe IX (Palmeri+, 2003) http://www.chiantidatabase.org/ : The CHIANTI atomic database http://www.nist.gov/pml/data/asd.cfm : NIST atomic spectra database Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- i [1/370] Lower level index 5- 44 A40 --- Level Level designation 46- 51 F6.2 eV Expt [0/170.2]? NIST experimental target level energy 53 A1 --- f_Expt [efg] Flag Expt (1) 55- 60 F6.2 eV This [0/179.1] This work's target level energy 62- 66 F5.2 eV Diff-This [-1/2]? Difference between this work and NIST 68- 73 F6.2 eV DZ14 [0/177]? DZ14 target level energy (2) 75- 78 F4.2 eV Diff-DZ14 [0/9]? Difference between DZ14 and NIST 80- 85 F6.2 eV A06 [0/170.9]? A06 target level energy (2) 87- 90 F4.2 eV Diff-A06 [0/6]? Difference between A06 and NIST 92- 97 F6.2 eV S02 [0/175.5]? S02 target level energy (2) 99-102 F4.2 eV Diff-S02 [0/6]? Difference between S02 and NIST 104-111 E8.2 s tau [0/578]? Excitation level lifetime -------------------------------------------------------------------------------- Note (1): Flag as follows: e = Young (2009ApJ...691L..77Y 2009ApJ...691L..77Y); f = Young & Landi (2009ApJ...707..173Y 2009ApJ...707..173Y); g = Tentative assignment by Del Zanna et al (2014, J/A+A/565/A77D). Note (2): DZ14 = Del Zanna et al. (2014, J/A+A/565/A77D); A06 = Aggarwal et al (2006, J/A+A/460/331); S02 = Storey et al (2002, J/A+A/394/753). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- i [1/302] Lower level index 5- 7 I3 --- k [3/370] Upper level index 9- 18 F10.2 0.1nm lambda [72.2/7341923.5] Wavelength; in Angstroms 20- 27 E8.2 --- S [0/98] Line strength 29- 36 E8.2 --- fik [0/3.1] Oscillator strength 38- 45 E8.2 s-1 Aki Transition probability -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- i [1/369] Lower level index 5- 7 I3 --- k [2/370] Upper level index 9- 16 E8.2 --- CS0.5 Effective collision strength at 0.5E4K 18- 25 E8.2 --- CS1.0 Effective collision strength at 1.0E4K 27- 34 E8.2 --- CS2.5 Effective collision strength at 2.5E4K 36- 43 E8.2 --- CS5.0 Effective collision strength at 5.0E4K 45- 52 E8.2 --- CS10 Effective collision strength at 1.0E5K 54- 61 E8.2 --- CS25 Effective collision strength at 2.5E5K 63- 70 E8.2 --- CS50 Effective collision strength at 5.0E5K 72- 79 E8.2 --- CS100 Effective collision strength at 1.0E6K 81- 88 E8.2 --- CS250 Effective collision strength at 2.5E6K 90- 97 E8.2 --- CS500 Effective collision strength at 5.0E6K -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 09-Feb-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line