J/ApJ/855/134   UV spectrum of molecular hydrogen in the Sun   (Jaeggli+, 2018)

Formation of the UV spectrum of molecular hydrogen in the Sun. Jaeggli S.A., Judge P.G., Daw A.N. <Astrophys. J., 855, 134 (2018)> =2018ApJ...855..134J 2018ApJ...855..134J
ADC_Keywords: Models, atmosphere; Sun; Spectra, ultraviolet; Molecular data Keywords: line: formation; molecular processes; radiative transfer; Sun: chromosphere; Sun: UV radiation Abstract: Ultraviolet (UV) lines of molecular hydrogen have been observed in solar spectra for almost four decades, but the behavior of the molecular spectrum and its implications for solar atmospheric structure are not fully understood. Data from the High-Resolution Telescope Spectrometer (HRTS) instrument revealed that H2 emission forms in particular regions, selectively excited by a bright UV transition region and chromospheric lines. We test the conditions under which H2 emission can originate by studying non-LTE models, sampling a broad range of temperature stratifications and radiation conditions. Stratification plays the dominant role in determining the population densities of H2, which forms in greatest abundance near the continuum photosphere. However, opacity due to the photoionization of Si and other neutrals determines the depth to which UV radiation can penetrate to excite the H2. Thus the majority of H2 emission forms in a narrow region, at about 650km in standard one-dimensional (1D) models of the quiet Sun, near the τ=1 opacity surface for the exciting UV radiation, generally coming from above. When irradiated from above using observed intensities of bright UV emission lines, detailed non-LTE calculations show that the spectrum of H2 seen in the quiet-Sun Solar Ultraviolet Measurement of Emitted Radiation atlas spectrum and HRTS light-bridge spectrum can be satisfactorily reproduced in 1D stratified atmospheres, without including three-dimensional or time-dependent thermal structures. A detailed comparison to observations from 1205 to 1550Å is presented, and the success of this 1D approach to modeling solar UV H2 emission is illustrated by the identification of previously unidentified lines and upper levels in HRTS spectra. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file fig5.dat 159 69539 *Synthetic H2 fluorescence spectra generated with the FALC, COX, and F2 atmospheres dataA.dat 61 27981 Parameters for lines of the H2 Lyman and Werner bands dataB.dat 293 27981 H2 line-integrated intensities and primary excitation wavelength for each of the model scenarios -------------------------------------------------------------------------------- Note on fig5.dat: We have selected three diverse 1D semi-empirical atmospheric models for the calculations: the average quiet-Sun model atmosphere "C" from Fontenla+ (1993ApJ...406..319F 1993ApJ...406..319F) (henceforth FALC), the cool model atmosphere COX from Avrett (1995itsa.conf..303A), and the F2 flare model atmosphere from Machado+ (1980ApJ...242..336M 1980ApJ...242..336M). -------------------------------------------------------------------------------- See also: J/A+AS/141/297 : H2 total transition probability (Abgrall+, 2000) J/A+A/375/591 : SUMER Spectral Atlas of Solar Disk Features (Curdt+, 2001) J/A+A/588/A96 : Partition functions for molecules and atoms (Barklem+, 2016) Byte-by-byte Description of file: fig5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.4 0.1nm lambda [910/1800] Wavelength; Angstroms 11- 19 E9.3 cW/m2/nm/sr i01 [3.4/182300] Spectral intensity from FALCx1cutoff (1) 21- 29 E9.3 cW/m2/nm/sr i02 [3.8/444600] Spectral intensity from FALCx3cutoff (1) 31- 39 E9.3 cW/m2/nm/sr i03 [4.9/1.4e+06] Spectral intensity from FALCx10cutoff (1) 41- 49 E9.3 cW/m2/nm/sr i04 [8.7/2.2e+06] Spectral intensity from FALCx30cutoff (1) 51- 59 E9.3 cW/m2/nm/sr i05 [16/7.3e+06] Spectral intensity from FALCx100cutoff (1) 61- 69 E9.3 cW/m2/nm/sr i06 [0.1/142200] Spectral intensity from COXx1cutoff (1) 71- 79 E9.3 cW/m2/nm/sr i07 [0.2/417400] Spectral intensity from COXx3cutoff (1) 81- 89 E9.3 cW/m2/nm/sr i08 [0.5/1.4e+06] Spectral intensity from COXx10cutoff (1) 91- 99 E9.3 cW/m2/nm/sr i09 [1.2/2.2e+06] Spectral intensity from COXx30cutoff (1) 101-109 E9.3 cW/m2/nm/sr i10 [2.2/7.3e+06] Spectral intensity from COXx100cutoff (1) 111-119 E9.3 cW/m2/nm/sr i11 [2501/6.3e+07] Spectral intensity from F2x1cutoff (1) 121-129 E9.3 cW/m2/nm/sr i12 [2501/6.4e+07] Spectral intensity from F2x3cutoff (1) 131-139 E9.3 cW/m2/nm/sr i13 [2503/6.4e+07] Spectral intensity from F2x10cutoff (1) 141-149 E9.3 cW/m2/nm/sr i14 [2508/6.5e+07] Spectral intensity from F2x30cutoff (1) 151-159 E9.3 cW/m2/nm/sr i15 [2524/7e+07] Spectral intensity from F2x100cutoff (1) -------------------------------------------------------------------------------- Note (1): In units of erg/s/cm2/Angstrom/Sr. -------------------------------------------------------------------------------- Byte-by-byte Description of file: dataA.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.3 0.1nm Wave [844.8/1844.6] Wavelength; Angstroms 10- 11 I2 --- Ji [0/26] Lower level angular momentum quantum number 13- 14 I2 --- vi [0/14] Lower level vibrational quantum number 16 A1 --- ci [X] Lower level configuration 18- 25 F8.2 cm-1 Ei [0/36105] Lower level energy 27- 28 I2 --- Jj [0/25] Upper level angular momentum quantum number 30- 31 I2 --- vj [0/37] Upper level vibrational quantum number 33- 34 A2 --- cj Upper level configuration 36- 44 F9.2 cm-1 Ej [90203/118376] Upper level energy 46- 54 E9.3 s-1 Aji [1e-06/6.2e+08] Einstein coefficient for spontaneous emission 56- 61 F6.4 --- PB [0.004/1] Probability upper level decays to a bound state -------------------------------------------------------------------------------- Byte-by-byte Description of file: dataB.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.3 0.1nm Wave [844.8/1844.6] Emitting line wavelength; Angstroms 10- 18 E9.3 mW/m2/sr il01 [0/242.3] Line intensity from FALCx1cutoff (1) 20- 27 F8.3 0.1nm wp01 [1103.2/1520] Wavelength of primary pump from FALCx1cutoff 29- 37 E9.3 mW/m2/sr il02 [0/242.6] Line intensity from FALCx3cutoff (1) 39- 46 F8.3 0.1nm wp02 [977/1520] Wavelength of primary pump from FALCx3cutoff 48- 56 E9.3 mW/m2/sr il03 [0/243.6] Line intensity from FALCx10cutoff (1) 58- 65 F8.3 0.1nm wp03 [976.8/1520] Wavelength of primary pump from FALCx10cutoff 67- 75 E9.3 mW/m2/sr il04 [0/248.2] Line intensity from FALCx30cutoff (1) 77- 84 F8.3 0.1nm wp04 [976.6/1520] Wavelength of primary pump from FALCx30cutoff 86- 94 E9.3 mW/m2/sr il05 [0/266.2] Line intensity from FALCx100cutoff (1) 96-103 F8.3 0.1nm wp05 [919.8/1520] Wavelength of primary pump from FALCx100cutoff 105-113 E9.3 mW/m2/sr il06 [0/274.6] Line intensity from COXx1cutoff (1) 115-122 F8.3 0.1nm wp06 [912/1518.2] Wavelength of primary pump from COXx1cutoff 124-132 E9.3 mW/m2/sr il07 [0/274.2] Line intensity from COXx3cutoff (1) 134-141 F8.3 0.1nm wp07 [912/1518.2] Wavelength of primary pump from COXx3cutoff 143-151 E9.3 mW/m2/sr il08 [0/274.3] Line intensity from COXx10cutoff (1) 153-160 F8.3 0.1nm wp08 [912/1520] Wavelength of primary pump from COXx10cutoff 162-170 E9.3 mW/m2/sr il09 [0/276.7] Line intensity from COXx30cutoff (1) 172-179 F8.3 0.1nm wp09 [912/1520] Wavelength of primary pump from COXx30cutoff 181-189 E9.3 mW/m2/sr il10 [0/449.6] Line intensity from COXx100cutoff (1) 191-198 F8.3 0.1nm wp10 [912/1515] Wavelength of primary pump from COXx100cutoff 200-208 E9.3 mW/m2/sr il11 [0/4841] Line intensity from F2x1cutoff (1) 210-217 F8.3 0.1nm wp11 [1103.2/1520] Wavelength of primary pump from F2x1cutoff 219-227 E9.3 mW/m2/sr il12 [0/4841] Line intensity from F2x3cutoff (1) 229-236 F8.3 0.1nm wp12 [1103.2/1520] Wavelength of primary pump from F2x3cutoff 238-246 E9.3 mW/m2/sr il13 [0/4842] Line intensity from F2x10cutoff (1) 248-255 F8.3 0.1nm wp13 [1103.2/1520] Wavelength of primary pump from F2x10cutoff 257-265 E9.3 mW/m2/sr il14 [0/4845] Line intensity from F2x30cutoff (1) 267-274 F8.3 0.1nm wp14 [1103.2/1520] Wavelength of primary pump from F2x30cutoff 276-284 E9.3 mW/m2/sr il15 [0/4856] Line intensity from F2x100cutoff (1) 286-293 F8.3 0.1nm wp15 [1103.2/1520] Wavelength of primary pump from F2x100cutoff -------------------------------------------------------------------------------- Note (1): In units of erg/s/cm2/sr. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 21-Jan-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line