J/ApJ/895/106 GAs Stripping Phenomena in galaxies with MUSE (Franchetto+, 2020)
GASP
XXVII: Gas-phase Metallicity Scaling Relations in Disk Galaxies with and
without Ram Pressure Stripping.
Franchetto A., Vulcani B., Poggianti B.M., Gullieuszik M., Mingozzi M.,
Moretti A., Tomicic N., Fritz J., Bettoni D., Jaffe Y.L.
<Astrophys. J., 895, 106 (2020)>
=2020ApJ...895..106F 2020ApJ...895..106F
ADC_Keywords: Galaxies; Redshifts; Abundances; Optical
Keywords: Galaxies ; Field galaxies ; Galaxy clusters ; Metallicity ;
Galaxy chemical evolution
Abstract:
Exploiting the data from the GAs Stripping Phenomena in galaxies with
MUSE (GASP) survey, we study the gas-phase metallicity scaling
relations of a sample of 29 cluster galaxies undergoing ram pressure
stripping and of a reference sample of (16 cluster and 16 field)
galaxies with no significant signs of gas disturbance. We adopt the
pyqz code to infer the mean gas metallicity at the effective radius
and achieve a well-defined mass-metallicity relation (MZR) in the
stellar mass range 109.25≤M*≤1011.5M☉ with a scatter of
0.12dex. At any given mass, reference cluster and stripping galaxies
have similar metallicities, while the field galaxies with
M*<1010.25M☉ show on average lower gas metallicity than galaxies
in clusters. Our results indicate that at the effective radius, the
chemical properties of the stripping galaxies are independent of the
ram pressure stripping mechanism. Nonetheless, at the lowest masses,
we detect four stripping galaxies well above the common MZR that
suggest a more complex scenario. Overall, we find signs of an
anticorrelation between the metallicity and both the star formation
rate and the galaxy size, in agreement with previous studies. No
significant trends are instead found with the halo mass,
clustercentric distance, and local galaxy density in clusters. In
conclusion, we advise a more detailed analysis of the spatially
resolved gas metallicity maps of the galaxies, able to highlight
effects of gas redistribution inside the disk due to ram pressure
stripping.
Description:
The GAs Stripping Phenomena (GASP) project observed 114 disk galaxies
at 0.04<z<0.07 in different environments (galaxy clusters, groups,
filaments, and isolated) and with stellar mass in the range
108.7<M*<1011.5M☉. The final data cubes consist of
300x300spaxels with a spatial sampling of 0.2x0.2". We stress that for
all GASP galaxies, the field of view (FoV) of Multi Unit Spectroscopic
Explorer (MUSE) is able to cover from 3 to 15 effective radii (Re)
from their center, with a mean of 7 Re. This coverage allows us to
observe the full optical extent of the galaxies and includes a wide
portion of sky around them.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 137 61 Properties of the sample
--------------------------------------------------------------------------------
See also:
J/MNRAS/416/727 : Padova-Millennium Galaxy and Group Catalogue (Calvi+, 2011)
J/ApJS/208/10 : Effects of a κ-distribution in HII regions (Dopita+,2013)
J/A+A/581/A41 : OmegaWINGS BV photometry of galaxy clusters (Gullieuszik+,2015)
J/A+A/607/A81 : Properties of the sample of clusters (Biviano+, 2017)
J/A+A/602/A85 : SN 1998bw MUSE datacube (Kruehler+, 2017)
J/MNRAS/469/2121 : Mass-metallicity relation revisited CALIFA (Sanchez+, 2017)
J/A+A/626/A14 : XMMXCSJ2215.9-1738 galaxies reduced datacubes (Maier+, 2019)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID GASP Identifier
14- 15 I2 h RAh [0/23] Hour of Right Ascension (J2000)
17- 18 I2 min RAm Minute of Right Ascension (J2000)
20- 24 F5.2 s RAs Second of Right Ascension (J2000)
26- 26 A1 --- DE- [±] Sign of the Declination (J2000)
27- 28 I2 deg DEd Degree of Declination (J2000)
30- 31 I2 arcmin DEm Arcminute of Declination (J2000)
33- 38 F6.3 arcsec DEs Arcsecond of Declination (J2000)
40- 41 A2 --- sample Sample (1)
43- 48 F6.4 --- z [0.04/0.08] Galaxy or mean galaxy cluster
redshift
50- 54 F5.2 [Msun] logMass [8.7/11.5] log, galaxy stellar mass
56- 59 F4.2 [Msun] e_logMass [0.04/0.2] Uncertainty in logM
61- 65 F5.2 arcsec Rad [2.22/12.07] Effective radius
67- 70 F4.2 arcsec E_Rad [0.09/2.03]? Upper uncertainty in Rad
72- 75 F4.2 arcsec e_Rad [0.1/2.67]? Lower uncertainty in Rad
77- 78 I2 deg i [0/82]? Inclination
80- 80 I1 deg e_i [0/9]? Uncertainty in i
82- 84 I3 deg PA [0/176]? Position angle, anti-clockwise from
North direction
86- 87 I2 deg e_PA [1/48]? Uncertainty in PA
89- 92 F4.2 [-] [O/H]1 [8.1/9.24]? mean gas-phase metallicity,
star-forming spaxels <0.1Re
94- 97 F4.2 [-] e_[O/H]1 [0.0/0.03]? Uncertainty in [O/H]1
99-102 F4.2 [-] [O/H]2 [8.01/9.22]? mean gas-phase metallicity,
star-forming spaxels <0.5Re
104-107 F4.2 [-] e_[O/H]2 [0.01/0.08]? Uncertainty in [O/H]2
109-112 F4.2 [-] [O/H]3 [8.07/9.24]? mean gas-phase metallicity,
star-forming spaxels in range 0.95-1.05Re
114-117 F4.2 [-] e_[O/H]3 [0.01/0.18]? Uncertainty in [O/H]3
119-122 F4.2 [-] [O/H]4 [8.1/9.21]? mean gas-phase metallicity,
star-forming spaxels beyond 0.5Re within the
galaxy disk
124-127 F4.2 [-] e_[O/H]4 [0.04/0.25]? Uncertainty in [O/H]4
129-132 F4.2 [-] [O/H]5 [8.32/8.82]? mean gas-phase metallicity Re (2)
134-137 F4.2 [-] e_[O/H]5 [0.01/0.07]? Uncertainty in [O/H]5
--------------------------------------------------------------------------------
Note (1): Samples as follows:
RF = reference field (16 occurrences)
RC = reference cluster (16 occurrences)
S = stripping (29 occurrences)
Note (2): Mean gas-phase metallicity at Re using the O3N2 calibration of
Curti+, 2017MNRAS.465.1384C 2017MNRAS.465.1384C.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Poggianti et al. Paper I : 2017ApJ...844...48P 2017ApJ...844...48P
Bellhouse et al. Paper II : 2017ApJ...844...49B 2017ApJ...844...49B
Fritz et al. Paper III : 2017ApJ...848..132F 2017ApJ...848..132F
Gullieuszik et al. Paper IV : 2017ApJ...846...27G 2017ApJ...846...27G
Moretti et al. Paper V : 2018MNRAS.475.4055M 2018MNRAS.475.4055M
Vulcani et al. Paper VII : 2018ApJ...852...94V 2018ApJ...852...94V
Vulcani et al. Paper VIII : 2017ApJ...850..163V 2017ApJ...850..163V
Jaffe et al. Paper IX : 2018MNRAS.476.4753J 2018MNRAS.476.4753J
Moretti et al. Paper X : 2018MNRAS.480.2508M 2018MNRAS.480.2508M
Vulcani et al. Paper XII : 2018MNRAS.480.3152V 2018MNRAS.480.3152V
Poggianti et al. Paper XIII : 2019MNRAS.482.4466P 2019MNRAS.482.4466P
Bellhouse et al. Paper XV : 2019MNRAS.485.1157B 2019MNRAS.485.1157B
Vulcani et al. Paper XVI : 2019MNRAS.487.2278V 2019MNRAS.487.2278V
Ramatsoku et al. Paper XVII : 2019MNRAS.487.4580R 2019MNRAS.487.4580R
George et al. Paper XVIII : 2019MNRAS.487.3102G 2019MNRAS.487.3102G
Radovich et al. Paper XIX : 2019MNRAS.486..486R 2019MNRAS.486..486R
Vulcani et al. Paper XX : 2019MNRAS.488.1597V 2019MNRAS.488.1597V
Gullieuszik et al. Paper XXI : 2020ApJ...899...13G 2020ApJ...899...13G
Moretti et al. Paper XXII : 2020ApJ...889....9M 2020ApJ...889....9M
Poggianti et al. Paper XXIII : 2019ApJ...887..155P 2019ApJ...887..155P
Vulcani et al. Paper XXIV : 2020ApJ...892..146V 2020ApJ...892..146V
Deb et al. Paper XXV : 2020MNRAS.494.5029D 2020MNRAS.494.5029D
Ramatsoku et al. Paper XXVI : 2020A&A...640A..22R 2020A&A...640A..22R
Bellhouse et al. Paper XXIX : 2021MNRAS.500.1285B 2021MNRAS.500.1285B
Vulcani et al. Paper XXX : 2020ApJ...899...98V 2020ApJ...899...98V
Tomicic et al. Paper XXXII : 2021ApJ...907...22T 2021ApJ...907...22T
Vulcani et al. Paper XXXIII : 2021ApJ...914...27V 2021ApJ...914...27V
Campitiello et al. Paper XXXIV : 2021ApJ...911..144C 2021ApJ...911..144C
(End) Prepared by [AAS], Coralie Fix [CDS], 21-Sep-2021