J/ApJ/896/18        VLA imaging of obscured WISE+NVSS QSOs        (Patil+, 2020)

High-resolution VLA imaging of obscured quasars: young radio jets caught in a dense ISM. Patil P., Nyland K., Whittle M., Lonsdale C., Lacy M., Lonsdale C., Mukherjee D., Trapp A.C., Kimball A.E., Lanz L., Wilkes B.J., Blain A., Harwood J.J., Efstathiou A., Vlahakis C. <Astrophys. J., 896, 18 (2020)> =2020ApJ...896...18P 2020ApJ...896...18P
ADC_Keywords: QSOs; Radio sources; Infrared sources Keywords: Active galaxies; Quasars; Supermassive black holes; Radio loud quasars; Radio jets; Radio telescopes; Galaxy evolution Abstract: We present new subarcsecond-resolution Karl G. Jansky Very Large Array (VLA) imaging at 10GHz of 155 ultraluminous (Lbol∼1011.7-1014.2L) and heavily obscured quasars with redshifts z∼0.4-3. The sample was selected to have extremely red mid-infrared-optical color ratios based on data from the Wide-Field Infrared Survey Explorer (WISE) along with a detection of bright, unresolved radio emission from the NRAO VLA Sky Survey (NVSS) or Faint Images of the Radio Sky at Twenty cm Survey. Our high-resolution VLA observations have revealed that the majority of the sources in our sample (93 out of 155) are compact on angular scales <0.2 (≤1.7kpc at z∼2). The radio luminosities, linear extents, and lobe pressures of our sources are similar to young radio active galactic nuclei (e.g., gigahertz-peaked spectrum [GPS] and compact steep-spectrum [CSS] sources), but their space density is considerably lower. Application of a simple adiabatic lobe expansion model suggests relatively young dynamical ages (∼104-7yr), relatively high ambient ISM densities (∼1-104cm-3), and modest lobe expansion speeds (∼30-10000km/s). Thus, we find our sources to be consistent with a population of newly triggered, young jets caught in a unique evolutionary stage in which they still reside within the dense gas reservoirs of their hosts. Based on their radio luminosity function and dynamical ages, we estimate that only ∼20% of classical large-scale FR I/II radio galaxies could have evolved directly from these objects. We speculate that the WISE-NVSS sources might first become GPS or CSS sources, of which some might ultimately evolve into larger radio galaxies. Description: A detailed description of our sample selection is given in Lonsdale+ (2015, J/ApJ/813/45). We obtained spectroscopic redshifts for 71 out of 80 attempted sources using several telescopes. We observed 167 sources from Lonsdale+ (2015, J/ApJ/813/45) at X band (8-12GHz) with the VLA in the A- and B-arrays through projects 12B-127 and 12A-064, respectively. The A-array observations were divided into 13 separate scheduling blocks (SBs), and a total of 129 sources were observed between 2012 October and December. The B-array observations were divided into seven different SBs, and 149 sources were observed from 2012 June to August. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 75 155 Observational details of our sample tablec1.dat 82 155 Beam sizes and source measurements tablec2.dat 235 207 Source spatial measurements for the VLA A- and B-array observations: results from JMFIT tablec3.dat 59 91 Physical properties for our sample sources with redshift available tablee1.dat 43 25 List of extended sources -------------------------------------------------------------------------------- See also: VIII/65 : 1.4GHz NRAO VLA Sky Survey (NVSS) (Condon+ 1998) II/311 : WISE All-Sky Data Release (Cutri+ 2012) VIII/92 : The FIRST Survey Catalog, Version 2014Dec17 (Helfand+ 2015) V/147 : The SDSS Photometric Catalogue, Release 12 (Alam+, 2015) J/MNRAS/204/151 : Bright radio sources at 178 MHz (3CRR) (Laing+ 1983) J/A+A/363/887 : High frequency peakers. I. (Dallacasa+, 2000) J/A+A/369/380 : CSS/GPS radio sources VLA observations (Fanti+, 2001) J/MNRAS/346/627 : CENSORS (Combined EIS-NVSS Survey) catalog (Best+, 2003) J/AJ/129/1198 : SDSS quasars in SWIRE ELAIS N1 field (Hatziminaoglou+, 2005) J/AJ/133/186 : Opt. spectroscopy of 77 luminous AGNs and QSOs (Lacy+, 2007) J/AN/330/223 : High frequency peakers: faint sample (Stanghellini+, 2009) J/MNRAS/408/2261 : Compact steep spectra (Kunert-Bajraszewska+, 2010) J/MNRAS/421/1569 : Properties of 18286 SDSS radio galaxies (Best+, 2012) J/AJ/144/49 : Quasars from SDSS-DR7, WISE and UKIDSS surveys (Wu+, 2012) J/ApJ/772/26 : AGN with WISE. II. The NDWFS Bootes field (Assef+, 2013) J/ApJS/208/24 : Spitzer MIR AGN survey. I. (Lacy+, 2013) J/MNRAS/445/955 : Radio-AGN feedback for 0.5<z<1 (Best+, 2014) J/MNRAS/438/796 : Local radio-galaxy population at 20GHz (Sadler+, 2014) J/ApJ/804/27 : NIR photometry of hot dust-obscured galaxies (Assef+, 2015) J/ApJ/813/45 : ALMA observations in z∼0.5-3 quasars (Lonsdale+, 2015) J/ApJ/805/90 : WISE ELIRGs and comparison with QSOs (Tsai+, 2015) J/ApJ/818/105 : CNSS pilot survey (Mooley+, 2016) J/MNRAS/458/2221 : ATLAS3D Project. XXXI (Nyland+, 2016) J/A+A/598/A78 : The GMRT 150MHz all-sky radio survey (Intema+, 2017) J/MNRAS/464/3882 : Mergers and galaxy-galaxy interactions (Weston+, 2017) J/A+A/609/A1 : FR0CAT: FIRST catalog of FR0 radio galaxies (Baldi+, 2018) J/ApJS/235/34 : Deep JVLA imaging of GOODS-N at 20cm (Owen, 2018) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- AName Abbreviated name used in this work (JHHMM+DD) 10- 27 A18 --- WISE WISE positional identifier (HHMMSS.ss+DDMMSS.s; J2000) 29- 32 I4 yr ObsA.Y [2012]? Observation Year, A-array 34- 35 I2 "month" ObsA.M ? Observation Month, A-array 37- 38 I2 d ObsA.D ? Observation day in month, A-array 40- 41 I2 uJy/beam RMSA [13/97]? 1σ rms noise level, A-array continuum image 43- 43 A1 --- l_SNA Limit flag on SN-A 45- 50 F6.1 --- SNA [3.5/2599.0]? Signal-to-noise, A-array 52- 53 A2 --- q_SNA Quality flag, A-array (1) 55- 58 I4 yr ObsB.Y [2012]? Observation Year, B-array 60- 61 I2 "month" ObsB.M [6/8]? Observation Month, B-array 63- 64 I2 d ObsB.D ? Observation day in month, B-array 66- 68 I3 uJy/beam RMSB [12/397]? 1σ rms noise level, B-array continuum image 70- 73 I4 --- SNB [3/2142]? Signal-to-noise ration, B-array 75- 75 A1 --- q_SNB Quality flag, B-array (1) -------------------------------------------------------------------------------- Note (1): Quality flags for the final continuum image as follows: G = an image free of any artifacts or calibration issues; ND = No detection; P = Poor quality image due to bad calibration or phase closure errors; F = Pipeline failed to calibrate uv-data. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- AName Abbreviated name used in this work 10 A1 --- Array [AB] VLA array of the best continuum image 12- 13 A2 --- Morph Source morphology (2) 15- 17 F3.1 arcsec aA [0.2/1.5]? Major axis, synthesized beam, A-array 19- 21 F3.1 arcsec bA [0.1/0.5]? Minor axis, synthesized beam, A-array 23- 25 I3 deg PAA [-81/89]? Position angle, synthesized beam, A-array, measured anti-clockwise from North 27- 31 F5.2 mJy/beam SpeakA [0.15/44.94]? X band (8-12GHz) peak flux density of the A-array image 33- 36 F4.2 mJy/beam e_SpeakA [0.01/1.35]? Uncertainty in Speak-A 38- 42 F5.2 mJy StotA [0.18/45.1]? Integrated flux of source A-array image 44- 47 F4.2 mJy e_StotA [0.02/1.35]? Uncertainty in Stot-A 49- 51 F3.1 arcsec aB [0.6/2.9]? Major axis, synthesized beam, B-array 53- 55 F3.1 arcsec bB [0.4/0.9]? Minor axis, synthesized beam, B-array 57- 60 I4 deg PAB [-180/87]? Position angle, synthesized beam, B-array, measured anti-clockwise from North 62- 66 F5.2 mJy/beam SpeakB [0.08/60.55]? X band (8-12GHz) peak flux density of the B-array image 68- 71 F4.2 mJy/beam e_SpeakB [0.01/1.82]? Uncertainty in Speak-B 73- 77 F5.2 mJy StotB [0.16/60.66]? Integrated flux of source B-array image 79- 82 F4.2 mJy e_StotB [0.04/4.52]? Uncertainty in Stot-B -------------------------------------------------------------------------------- Note (2): Source morphology based on the criteria defined in Section 4.3. Code as follows: UR = Unresolved; SR = Slightly resolved; R = Fully resolved; D = Double; T = Triple; M = Multi-component Sources. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- AName Abbreviated name used in this work 10- 28 A19 --- WISE WISE positional identifier 30- 34 A5 --- Reg Region/Source component (1) 36- 37 I2 h RAh ? Hour of Right Ascension (J2000) 39- 40 I2 min RAm ? Minute of Right Ascension (J2000) 42- 47 F6.3 s RAs ? Second of Right Ascension (J2000) 49- 54 F6.2 arcsec dRA [-17/20]? Separation in arcseconds in RA from Reg 1 (2) 56 A1 --- DE- Sign of the Declination (J2000) 57- 58 I2 deg DEd ? Degree of Declination (J2000) 60- 61 I2 arcmin DEm ? Arcminute of Declination (J2000) 63- 67 F5.2 arcsec DEs ? Arcsecond of Declination (J2000) 69- 73 F5.2 arcsec dDE [-9.6/8.4]? Separation in arcseconds in DE from Reg 1 (2) 75 A1 --- l_aA0 Limit flag for aA0 (3) 77- 80 I4 mas aA0 [8/2870]? Deconvolved source size, major axis (3) 82- 84 I3 mas e_aA0 [1/101]? Uncertainty in aA0 (3) 86 A1 --- l_bA0 Limit flag for bA0 (3) 88- 91 I4 mas bA0 [0/1160]? Deconvolved source size, minor axis (3) 93- 94 I2 mas e_bA0 [0/91]? Uncertainty in aA0 (3) 96- 98 I3 deg PAA0 [0/180]? Deconvolved source position angle (4) 100- 101 I2 deg e_PAA0 [0/78]? Uncertainty in PAA0 (4) 103- 107 F5.2 mJy/beam SpeakA [0.13/45]? Peak flux density of the A-array source 109- 112 F4.2 mJy/beam e_SpeakA [0.01/1.4]? Uncertainty in SpeakA 114- 118 F5.2 mJy StotA [0.16/45.1]? Integrated flux of A-array source 120- 123 F4.2 mJy e_StotA [0.02/1.4]? Uncertainty in StotA 125- 126 I2 h RABh ? Hour of Right Ascension (J2000) 128- 129 I2 min RABm ? Minute of Right Ascension (J2000) 131- 136 F6.3 s RABs ? Second of Right Ascension (J2000) 138- 143 F6.2 arcsec dRAB [-17/64]? Separation in arcseconds in RA from Reg 1 (2) 145 A1 --- DEB- Sign of the Declination (J2000) 146- 147 I2 deg DEBd ? Degree of Declination (J2000) 149- 150 I2 arcmin DEBm ? Arcminute of Declination (J2000) 152- 156 F5.2 arcsec DEBs ? Arcsecond of Declination (J2000) 158- 163 F6.2 arcsec dDEB [-41.1/23.2]? Separation in arcseconds in DE from Reg 1 (2) 165 A1 --- l_aB0 Limit flag for aB0 (3) 167- 171 I5 mas aB0 [0/23490]? Deconvolved source size, major axis (3) 173- 176 I4 mas e_aB0 [2/1592]? Uncertainty in aB0 (3) 178 A1 --- l_bB0 Limit flag for bB0 (3) 180- 184 I5 mas bB0 [0/11210]? Deconvolved source size, minor axis (3) 186- 188 I3 mas e_bB0 [2/353]? Uncertainty in bB0 (3) 190- 192 I3 deg PAB0 [0/180]? Deconvolved source position angle (4) 194- 195 I2 deg e_PAB0 [0/71]? Uncertainty in PAB0 (4) 197- 201 F5.2 mJy/beam SpeakB [0.08/61]? Peak flux density of the B-array source 203- 206 F4.2 mJy/beam e_SpeakB [0.01/2]? Uncertainty in SpeakB 208- 212 F5.2 mJy StotB [0.16/61]? Integrated flux of B-array source 214- 217 F4.2 mJy e_StotB [0.03/4.5]? Uncertainty in StotB 219- 223 F5.2 --- alphaIB [-4.7/4.8]? In-band spectral index (5) 225- 228 F4.2 --- e_alphaIB [0/2]? Uncertainty in alphaIB 230- 235 I6 --- SN [3/2183]? Source detection signal-to-noise ratio (6) -------------------------------------------------------------------------------- Note (1): For a single component source, the entire component is named Reg 1. For multi-component sources, brightest radio emission component is named Reg 1. Note (2): In case of sources with more than one component, a source separation (in arcseconds) from the Reg 1 is provided. Note (3): Deconvolved source sizes for the A-array data. If source is resolved only along the major axis, the deconvolved minor axis is specified as 0. In case of unresolved source, we provide an upper limit on the major axis. A detailed description is provided in Section 4.2. For extended sources with non-gaussian like emission, we provide the size of 3σ contour as the angular size of the respective region. Note (4): Position angle of the fitted gaussian, measured anti-clockwise from North. Note (5): In-band spectral index for the best image available. We used A-array data when a good quality image is available. Note (6): Source detection S/N averaged from the 8.6 and 11.4GHz images used for calculating alphaIB. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- AName Abbreviated name used in this work 10- 13 F4.2 --- z [0.3/2.85] Quasar redshift 15- 19 A5 --- Reg Region/Source component 21- 21 A1 --- l_amaj Upper limit flag on major axis (1) 23- 27 F5.1 kpc amaj [0.1/147.4] Linear size, major axis 29- 29 A1 --- l_bmin Upper limit flag on minor axis (1) 31- 34 F4.1 kpc bmin [0/70.3]? Linear size, minor axis 36- 40 F5.2 [W/Hz] logL1.4GHz [24.4/27.7]? log of rest-frame 1.4GHz luminosity (2) 42- 46 F5.2 --- alpha [-2.1/0.5]? Spectral index, NVSS to 10GHz observations (3) 48- 51 F4.2 --- e_alpha [0.02/0.3]? Uncertainty on alpha 53- 53 A1 --- l_logPl Limit flag on logPl 55- 59 F5.2 [0.1Pa] logPl [-9.7/-3.3] log, Equipartition lobe pressure, dyne/cm2 (Section 5.4) -------------------------------------------------------------------------------- Note (1): For an unresolved source, we use an upper limit on the angular major axis to estimate the limit on the source linear size. Note (2): We use NVSS flux and the spectral index between NVSS and 10GHz continuum observations to calculate the luminosity. Note (3): Fluxes from all of the regions are added up to estimate the spectral indices. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablee1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- AName Abbreviated name used in this work 10- 11 A2 --- Morph1 Source Morphology, VLA-X (1) 13- 14 A2 --- Morph2 Source Morphology, VLASS (1) 16- 17 A2 --- Morph3 Source Morphology, FIRST (1) 19- 21 A3 --- Morph4 Source Morphology, TGSS (1) 23- 27 F5.2 arcsec Ang1 [0.02/46.1] Angular extent, VLA-X (2) 29- 32 F4.1 arcsec Ang2 [2.4/47] Angular extent, VLASS (2) 34- 37 F4.1 arcsec Ang3 [5.4/47.3]? Angular extent, FIRST (2) 39- 43 F5.1 arcsec Ang4 [12/153.1]? Angular extent, TGSS (2) -------------------------------------------------------------------------------- Note (1): The morphological classes are as follows: UR = unresolved; SR = slightly or marginally resolved; D = double; T = triple; M = multicomponent sources. The detailed description of morphological classes is given in Section 4.3. Note (2): Largest angular extent in arcseconds for the radio emission detected in our 10GHz VLA survey, VLASS (VLA Sky Survey, Lacy+ 2020PASP..132c5001L 2020PASP..132c5001L), FIRST (VIII/92), and TGSS (the GMRT Sky Survey, Intema+ 2017A&A...598A..78I 2017A&A...598A..78I), respectively. For sources with a single component emission, we provide angular size estimates from their respective source catalogs. For multi-component sources, we provide largest source separation measured manually using CASA task Viewer. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 29-Sep-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line