J/ApJ/900/58    Opt-IR LC compilation of DES Stripe 82 quasars    (Yang+, 2020)

Dust reverberation mapping in distant quasars from optical and mid-infrared imaging surveys. Yang Q., Shen Y., Liu X., Aguena M., Annis J., Avila S., Banerji M., Bertin E., Brooks D., Burke D., Carnero Rosell A., Carrasco Kind M., da Costa L., De Vicente J., Desai S., Diehl H.T., Doel P., Flaugher B., Fosalba P., Frieman J., Garcia-Bellido J., Gerdes D., Gruen D., Gruendl R., Gschwend J., Gutierrez G., Hinton S., Hollowood D.L., Honscheid K., Kuropatkin N., Maia M., March M., Marshall J., Martini P., Melchior P., Menanteau F., Miquel R., Paz-Chinchon F., Plazas Malagon A., Romer K., Sanchez E., Scarpine V., Schubnell M., Serrano S., Sevilla I., Smith M., Suchyta E., Tarle G., Varga T.N., Wilkinson R. <Astrophys. J., 900, 58 (2020)> =2020ApJ...900...58Y 2020ApJ...900...58Y
ADC_Keywords: QSOs; Photometry; Optical; Photometry, infrared; Redshifts; Surveys Keywords: Active galactic nuclei ; Quasars ; Dust continuum emission ; Reverberation mapping Abstract: The size of the dust torus in active galactic nuclei (AGNs) and their high-luminosity counterparts, quasars, can be inferred from the time delay between UV/optical accretion disk continuum variability and the response in the mid-infrared (MIR) torus emission. This dust reverberation mapping (RM) technique has been successfully applied to ∼70 z≲0.3 AGNs and quasars. Here we present first results of our dust RM program for distant quasars covered in the Sloan Digital Sky Survey Stripe 82 region combining ∼20yr ground-based optical light curves with 10yr MIR light curves from the WISE satellite. We measure a high-fidelity lag between W1 band (3.4µm) and g band for 587 quasars over 0.3≲z≲2 (∼0.8) and two orders of magnitude in quasar luminosity. They tightly follow (intrinsic scatter ∼0.17dex in lag) the IR lag-luminosity relation observed for z<0.3 AGNs, revealing a remarkable size-luminosity relation for the dust torus over more than four decades in AGN luminosity, with little dependence on additional quasar properties such as Eddington ratio and variability amplitude. This study motivates further investigations in the utility of dust RM for cosmology and strongly endorses a compelling science case for the combined 10yr Vera C. Rubin Observatory Legacy Survey of Space and Time (optical) and 5yr Nancy Grace Roman Space Telescope 2µm light curves in a deep survey for low-redshift AGN dust RM with much lower luminosities and shorter, measurable IR lags. The compiled optical and MIR light curves for 7384 quasars in our parent sample are made public with this work. Description: Our parent quasar sample includes the 9258 spectroscopically confirmed broad-line quasars in the Stripe 82 (S82) region (MacLeod+ 2012, J/ApJ/753/106) that are included in the SDSS DR7 quasar catalog (Shen+ 2011, J/ApJS/194/45). We extract the WISE light curves from the latest observations up to 2019 December 13 (released on 2020 March 26) for 9258 S82 quasars, using a matching radius of 2". See Section 2.2. A total of 7384 of these S82 quasars --covered by DES-- have available WISE light curves in W1. We compile all available optical photometric data from various ground-based imaging surveys that cover the S82 region, including SDSS, PS1, DES, CRTS, ASAS-SN, PTF, and ZTF. See Sections 2.3 and 2.4. Our finalcut sample includes 587 quasars with high-fidelity MIR lag measurements in the quasar luminosity-redshift plane. See Section 3.5. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file qsos.dat 7 7384 The 7384 quasars in the parent sample, matched in WISE and covered in DES; table added by CDS table3.dat 62 1152709 Compiled light curves for the 7384 S82 quasars table4.dat 149 587 Finalcut lag sample -------------------------------------------------------------------------------- See also: II/311 : WISE All-Sky Data Release (Cutri+ 2012) II/349 : The Pan-STARRS release 1 (PS1) Survey - DR1 (Chambers+, 2016) II/357 : The Dark Energy Survey (DES): Data Release 1 (Abbott+, 2018) VII/289 : SDSS quasar catalog, sixteenth data release (DR16Q) (Lyke+, 2020) J/ApJS/95/1 : Atlas of Quasar Energy Distributions (Elvis+ 1994) J/AJ/131/2766 : Quasar luminosity function from SDSS-DR3 (Richards+, 2006) J/AJ/134/973 : SDSS Stripe 82 star catalogs (Ivezic+, 2007) J/ApJ/696/870 : Catalina Real-time Transient Survey (CRTS) (Drake+, 2009) J/ApJ/698/895 : Variations in QSOs optical flux (Kelly+, 2009) J/ApJ/743/156 : NEOWISE obs. of NEOs: preliminary results (Mainzer+, 2011) J/ApJ/753/106 : Quasar variability with SDSS and POSS imaging (MacLeod+, 2012) J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011) J/AJ/144/49 : Quasars from SDSS-DR7, WISE and UKIDSS surveys (Wu+, 2012) J/A+A/558/A149 : VLTI/MIDI AGN Large Program observations (Burtscher+, 2013) J/ApJS/206/4 : SED and bol. corrections for luminous QSOs (Krawczyk+, 2013) J/ApJ/788/48 : X-ray through NIR photometry of NGC 2617 (Shappee+, 2014) J/ApJ/788/159 : 17 Seyfert 1 galaxies light curves (Koshida+, 2014) J/ApJ/792/30 : NEOWISE magnitudes for near-Earth objects (Mainzer+, 2014) J/ApJ/794/120 : Sloan Digital Sky Survey coadd. Stripe 82 (Annis+, 2014) J/ApJS/216/4 : SDSS-RM project: technical overview (Shen+, 2015) J/ApJS/219/39 : QSOs selection from SDSS and WISE (Richards+, 2015) J/ApJ/801/127 : 3.6um, 4.5um, B & V light curves of NGC 6418 (Vazquez+, 2015) J/ApJ/817/119 : Spitzer/IRAC var. survey of Bootes field (Kozlowski+, 2016) J/ApJ/818/30 : Lag measurements for 15 z<0.8 QSOs from SDSS-RM (Shen+, 2016) J/ApJ/836/186 : Continuum-band lags in SDSS QSOs from PS1 obs. (Jiang+, 2017) J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017) J/ApJ/854/160 : SDSS & DES long-term extreme var. QSOs (Rumbaugh+, 2018) J/ApJ/862/123 : griz light curves of 15 DES quasars (Mudd+, 2018) J/ApJ/880/126 : SDSS RM project: continuum lags (Homayouni+, 2019) J/ApJS/249/18 : The ZTF catalog of periodic variable stars (Chen+, 2020) Byte-by-byte Description of file: qsos.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 I7 --- DBID [70/7913279] Object ID of SDSS S82 quasar -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 I7 --- DBID [70/7913279] Object ID of SDSS S82 quasar 9- 22 F14.8 d MJD [51075.2/58830.5] Modified Julian Date 24- 27 A4 --- Survey Survey identifier (1) 29- 30 A2 --- Band Photometric filter (gri, V or W1) 32- 37 F6.3 mag mag [10.1/29.1] Apparent magnitude in Band (2) 39- 44 F6.3 mag e_mag [0.001/21.61]?=99.999 Uncertainty in mag 46- 53 F8.4 mJy Flux [0/106] Flux density in Band 55- 62 E8.2 mJy e_Flux [3e-6/4.3] Uncertainty in Flux -------------------------------------------------------------------------------- Note (1): Survey as follows: SDSS = Sloan Digital Sky Survey (S82 region) in g-band (1998-2007); 432801 occurrences. ZTF = Zwicky Transient Facility (Bellm+ 2019PASP..131a8002B 2019PASP..131a8002B) g-band (2018); 203317 occurrences. PS1 = Pan-STARRS (Chambers+ 2016, II/349) in g, r and i-band (2011-2014); 171901 occurrences. DES = Dark Energy Survey (Abbott+ 2018, II/357) in g, r & i-band (2013-2018); 165748 occurrences. WISE = The all-sky Wide-field Infrared Survey Explorer (II/311) W1 band (2010-2019); 100417 occurrences. CRTS = Catalina Real-time Transient Survey (Drake+ 2009, J/ApJ/696/870), unfiltered (2005-2013); 69237 occurrences. PTF = Palomar Transient Factory (Law+ 2009PASP..121.1395L 2009PASP..121.1395L) in g-band (2009-2014); 9288 occurrences. Note (2): AB for optical magnitudes and Vega for WISE magnitudes. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 I7 --- DBID [2401/7907462] Object ID of SDSS S82 quasar 9- 18 F10.6 deg RAdeg Right Ascension (J2000) 20- 28 F9.6 deg DEdeg [-1.26/1.26] Declination (J2000) 30- 35 F6.4 --- z [0.2/3.34] Spectroscopic redshift 37- 42 F6.3 [10-7W] logLbol [44.55/47.65]? log bolometric luminosity; in erg/s units (1) 44- 48 F5.3 [10-7W] e_logLbol [0.001/0.081]? Uncertainty in logLbol 50- 55 F6.3 [Msun] logBH [7.23/10.15]? log fiducial single-epoch black hole mass (1) 57- 61 F5.3 [Msun] e_logBH [0.018/2]? Uncertainty in BH 63- 68 F6.3 [-] logEdd [-2.98/0.3]? log Eddington ratio based on logBH 70- 71 I2 --- Nep [12/15] Number of WISE epochs 73- 78 F6.3 mag W1mag [11.75/16.13] WISE 3.4um band weighted average magnitude 80- 84 F5.3 mag RMS [0.02/0.41] W1-band intrinsic RMS 86- 90 F5.3 mag e_RMS [0.005/0.08] Uncertainty in RMS 92- 96 F5.3 --- SNR [4/5.5] S/N of W1-band intrinsic RMS 98-104 F7.4 --- RMax [-0.43/0.98] Peak correlation from ICCF (2) 106-111 F6.4 --- RWMax [0.53/0.99] Peak correlation from the weighted ICCF (WCCF=ICCFxPMIR) 113-118 F6.1 d Peak [69/5952] Peak location of WCCF 120-125 F6.4 --- fPeak [0.5/1] Primary lag peak 127-133 F7.2 d tau [79/4415] JAVELIN time delay in observed frame 135-141 F7.2 d e_tau [4/4389] Lower 1σ limit in tau 143-149 F7.2 d E_tau [116/4631] Upper 1σ limit in tau -------------------------------------------------------------------------------- Note (1): From Shen et al. (2011, J/ApJS/194/45). Note (2): ICCF = the interpolated cross-correlation function (Gaskell & Peterson 1987ApJS...65....1G 1987ApJS...65....1G & Peterson+ 1998PASP..110..660P 1998PASP..110..660P; see Section 3). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 15-Dec-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line