J/ApJ/905/170 Mass-based structural param. for 3D-HST galaxies (Mosleh+, 2020)
Galaxy sizes since z=2 from the perspective of stellar mass distribution within
galaxies.
Mosleh M., Hosseinnejad S., Hosseini-ShahiSavandi S.Z., Tacchella S.
<Astrophys. J., 905, 170 (2020)>
=2020ApJ...905..170M 2020ApJ...905..170M
ADC_Keywords: Galaxies, optical; Morphology; Redshifts; Stars, masses;
Surveys
Keywords: Galaxy structure ; Galaxy evolution ; Galaxy mass distribution ;
Galaxy radii
Abstract:
How stellar mass assembles within galaxies is still an open question.
We present measurements of the stellar mass distribution on
kiloparsec-scales for ∼5500 galaxies with stellar masses above
log(M*/M☉)≥9.8 up to redshift 2.0. We create stellar mass
maps from Hubble Space Telescope observations by means of the
pixel-by-pixel spectral energy distribution fitting method. These maps
are used to derive radii encompassing 20%, 50%, and 80% (r20, r50, and
r80) of the total stellar mass from the best-fit Sersic models. The
reliability and limitations of the structural parameter measurements
are checked extensively using a large sample (∼3000) of simulated
galaxies. The size-mass relations and redshift evolution of r20, r50,
and r80 are explored for star-forming and quiescent galaxies. At fixed
mass, the star-forming galaxies do not show significant changes in
their r20, r50, and r80 sizes, indicating self-similar growth. Only
above the pivot stellar mass of log(M*/M☉)∼10.5 does r80
evolve as r80∝(1+z)-0.85±0.20, indicating that mass builds
up in the outskirts of these systems (inside-out growth). The Sersic
values also increase for the massive star-forming galaxies toward late
cosmic time. Massive quiescent galaxies show stronger size evolution
at all radii, in particular, the r20 sizes. For these massive
galaxies, Sersic values remain almost constant since at least z∼1.3,
indicating that the strong size evolution is related to the changes in
the outer parts of these galaxies. We make all the structural
parameters publicly available.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table6.dat 186 5557 Structural properties for 5557 galaxies on
CANDELS fields
--------------------------------------------------------------------------------
See also:
J/AJ/100/1091 : UBR photometry of 39 elliptical galaxies (Peletier+ 1990)
J/ApJ/762/77 : PM2GC mass-limited sample surface phot. (Poggianti+, 2013)
J/ApJ/763/73 : Surface density profiles of GOODS-S gal. (Szomoru+, 2013)
J/ApJS/214/24 : 3D-HST+CANDELS catalog (Skelton+, 2014)
J/ApJ/805/181 : Classification of 1.5≤z≤3 HUDF galaxies (Cibinel+, 2015)
J/ApJS/225/27 : 3D-HST Survey: grism spectra master cat. (Momcheva+, 2016)
J/MNRAS/476/1765 : MaNGA E and S galaxies properties (Li+, 2018)
J/ApJ/872/91 : SHELS galaxy sizes using Subaru/HSC (Damjanov+, 2019)
J/A+A/626/A61 : Structural parameters of galaxies (Morselli+, 2019)
J/ApJ/877/103 : Half-mass radii for galaxies at 1.0≤z≤2.5 (Suess+, 2019)
J/ApJS/244/16 : HLF photometric catalog in GOODS-S v2.0 (Whitaker+, 2019)
J/A+A/640/A34 : Red-sequence early-type galaxies in clusters (Andreon, 2020)
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- ID [1/50460] Source identification number (1)
7- 13 A7 --- Field CANDELS field name
15- 24 F10.6 deg RAdeg [34.2/215.31] Right Ascension (J2000) (1)
26- 36 F11.7 deg DEdeg [-27.96/62.4] Declination (J2000) (1)
38- 41 F4.2 --- z [0.09/2] Redshift (1)
43- 47 F5.2 [Msun] logM* [9.8/11.54] Log total stellar mass (1)
49- 52 F4.1 --- nMI [0.3/10]?=-1 First method best-fit Sersic
parameter (2)
54- 57 F4.1 --- e_nMI [0.1/1.5]?=-1 Uncertainty in nMI
59- 64 F6.3 kpc r50MI [0.03/15.3]?=-1 First method best-fit
half-mass, r50, parameter
66- 71 F6.3 kpc e_r50MI [0.01/7.3]?=-1 Uncertainty in r50MI
73- 78 F6.3 kpc r20MI [0.004/8.83]?=-1 First method best-fit r20
parameter
80- 85 F6.3 kpc e_r20MI [0.003/4.3]?=-1 Uncertainty in r20MI
87- 93 F7.3 kpc r80MI [0.05/112]?=-1 First method best-fit r80
parameter
95-100 F6.3 kpc e_r80MI [0.05/22]?=-1 Uncertainty in r80MI
102 I1 --- fMI [0/1] Quality flag for first method
(0=reliable method result; 1=bad)
104-109 F6.3 --- nMII [0.1/12]?=-1 Second method best-fit Sersic
parameter
111-118 F8.3 --- e_nMII [0/6775]?=-1 Uncertainty in nMII
120-125 F6.3 --- q [0.1/1]?=-1 Second method best-fit q parameter
127-137 F11.3 --- e_q [0/1565818]?=-1 Uncertainty in q
139-144 F6.3 kpc r50MII [0.002/53.1]?=-1 Second method best-fit
half-mass, r50, parameter
146-152 F7.3 kpc e_r50MII [0/600]?=-1 Uncertainty in r50MII
154-159 F6.3 kpc r20MII [0/8.86]?=-1 Second method best-fit r20
parameter
161-167 F7.3 kpc e_r20MII [0/283]?=-1 Uncertainty in r20MII
169-175 F7.3 kpc r80MII [0.003/407.3]?=-1 Second method best-fit r80
parameter
177-184 F8.3 kpc e_r80MII [0/4015]?=-1 Uncertainty in r80MII
186 I1 --- fMII [0/1] Quality flag for second method
(0=reliable method result; 1=bad)
--------------------------------------------------------------------------------
Note (1): From the v4.1 3D-HST catalogs (Skelton+, 2014, J/ApJS/214/24 ;
Sources are <[SWM2014] {Field} {ID}> in Simbad).
Note (2): The Sersic parameters from the first approach, 1D fitting, should be
corrected based on the results from the simulations (see Appendix B).
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 28-Jul-2022