J/ApJ/905/94      Classif. for PS1-MDS SNe with SuperRAENN      (Villar+, 2020)

SuperRAENN: a semisupervised supernova photometric classification pipeline trained on Pan-STARRS1 Medium-Deep Survey supernovae. Villar V.A., Hosseinzadeh G., Berger E., Ntampaka M., Jones D.O., Challis P., Chornock R., Drout M.R., Foley R.J., Kirshner R.P., Lunnan R., Margutti R., Milisavljevic D., Sanders N., Pan Y.-C., Rest A., Scolnic D.M., Magnier E., Metcalfe N., Wainscoat R., Waters C. <Astrophys. J., 905, 94 (2020)> =2020ApJ...905...94V 2020ApJ...905...94V
ADC_Keywords: Supernovae; Redshifts; Spectral types; Photometry; Spectra, optical Keywords: Supernovae ; Astrostatistics ; Light curve classification Abstract: Automated classification of supernovae (SNe) based on optical photometric light-curve information is essential in the upcoming era of wide-field time domain surveys, such as the Legacy Survey of Space and Time (LSST) conducted by the Rubin Observatory. Photometric classification can enable real-time identification of interesting events for extended multiwavelength follow-up, as well as archival population studies. Here we present the complete sample of 5243 "SN-like" light curves (in gP1rP1iP1zP1) from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). The PS1-MDS is similar to the planned LSST Wide-Fast-Deep survey in terms of cadence, filters, and depth, making this a useful training set for the community. Using this data set, we train a novel semisupervised machine learning algorithm to photometrically classify 2315 new SN-like light curves with host galaxy spectroscopic redshifts. Our algorithm consists of an RF supervised classification step and a novel unsupervised step in which we introduce a recurrent autoencoder neural network (RAENN). Our final pipeline, dubbed SuperRAENN, has an accuracy of 87% across five SN classes (Type Ia, Ibc, II, IIn, SLSN-I) and macro-averaged purity and completeness of 66% and 69%, respectively. We find the highest accuracy rates for SNe Ia and SLSNe and the lowest for SNe Ibc. Our complete spectroscopically and photometrically classified samples break down into 62.0% Type Ia (1839 objects), 19.8% Type II (553 objects), 4.8% Type IIn (136 objects), 11.7% Type Ibc (291 objects), and 1.6% Type I SLSNe (54 objects). Description: PS1 is a wide-field survey telescope located near the summit of Haleakala, Maui, with a 1.8m diameter primary mirror and a 1.4 gigapixel camera (GPC1). The Pan-STARRS1 Medium-Deep Survey (PS1-MDS), one of several PS1 surveys (Chambers+ 2016, II/349), was conducted between 2009 and 2014 July. It consisted of 10 single-pointing fields, each of approximately 7.1deg2, with a pixel scale of 0.25". During its 5yr survey, PS1-MDS discovered 5243 SN-like objects. Of the 5243 SN-like objects, 4090 host galaxies were targeted through a concerted observational effort. The majority (3321 objects) were observed using the Hectospec multifiber instrument on MMT. Additional host redshifts were obtained with the Anglo-Australian Telescope (AAT; 290 objects), the WIYN telescope (217 objects), and the Apache Point Observatory 3.5m telescope (APO; 5 objects). Additional host redshifts were obtained from archival survey data. See Section 2. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 171 5243 Supernovae (SNe) properties table2.dat 88 2885 SNe classification table3.dat 74 15 Rare transients classification -------------------------------------------------------------------------------- See also: III/250 : The VIMOS VLT deep survey (VVDS-DEEP) (Le Fevre+ 2005) VII/259 : 6dF galaxy survey final redshift release (Jones+, 2009) II/349 : The Pan-STARRS release 1 (PS1) Survey - DR1 (Chambers+, 2016) J/ApJS/78/1 : Galaxies in 7 clusters 0.35<z<0.55 (Dressler+, 1992) J/ApJS/155/271 : Chandra Deep Field-South: Opt. spectroscopy (Szokoly+, 2004) J/MNRAS/372/425 : 2dF-SDSS Luminous Red Galaxy Survey, 2SLAQ (Cannon+, 2006) J/AJ/132/2409 : Deep ATLAS radio observations of CDFS (Norris+, 2006) J/A+A/474/473 : XMM-LSS survey: AGN classifications (Garcet+, 2007) J/ApJS/172/70 : zCOSMOS-bright catalog (Lilly+, 2007) J/A+A/467/73 : 3σ hard sample of XMDS survey (Tajer+, 2007) J/A+A/477/717 : Spectroscopy of Type Ia supernovae (Bronder+, 2008) J/MNRAS/387/1323 : SDSS photometry of luminous red galaxies (Ross+, 2008) J/A+A/495/53 : Physical properties of VVDS galaxies (Lamareille+, 2009) J/ApJS/184/218 : The zCOSMOS 10k-bright spectroscopic sample (Lilly+, 2009) J/ApJS/182/625 : WIYN spectroscopy in the deep SWIRE field (Owen+, 2009) J/ApJ/696/1195 : COSMOS AGN spectroscopic survey. I. (Trump+, 2009) J/A+A/512/A12 : VLT/VIMOS spectroscopy in GOODS-S field (Balestra+, 2010) J/ApJ/711/928 : Low-redshift Lyα galaxies from GALEX (Cowie+, 2010) J/MNRAS/401/1429 : WiggleZ dark energy survey (DR1) (Drinkwater+, 2010) J/MNRAS/405/2302 : Improved redshifts for SDSS quasar spectra (Hewett+, 2010) J/MNRAS/401/294 : Optical identification of XMM-LSS sources (Stalin+, 2010) J/A+A/529/A135 : AGN Opt/IR properties in Lockman Hole (Rovilos+, 2011) J/ApJ/738/162 : SN Ia candidates from the SDSS-II SN Survey (Sako+, 2011) J/MNRAS/422/25 : SDSS DR7 groups, clusters and filaments (Smith+, 2012) J/ApJ/750/99 : The Pan-STARRS1 photometric system (Tonry+, 2012) J/ApJ/769/39 : SN Ibn PS1-12sk optical & NIR light curves (Sanders+, 2013) J/ApJ/794/23 : Pan-STARRS1 transients optical photometry (Drout+, 2014) J/MNRAS/441/1802 : Low-redshift QSOs in SDSS Stripe 82 (Karhunen+, 2014) J/ApJ/795/44 : PS1 SNe Ia (0.02<z<0.7) griz light curves (Rest+, 2014) J/ApJ/799/208 : Type IIP supernovae from Pan-STARRS1 (Sanders+, 2015) J/ApJ/807/178 : Rich galaxy clusters identified in SDSS-DR12 (Wen+, 2015) J/ApJ/837/120 : Lick Observatory SN Search (LOSS) revisited (Graur+, 2017) J/ApJ/857/51 : Dark energy properties with PS1 SNe. II. (Jones+, 2018) J/ApJ/852/81 : 17 PS1 superluminous SNe LCs + classif. sp. (Lunnan+, 2018) J/A+A/611/A97 : Phot. quasar candidates in Stripe 82 (Pasquet-Itam+, 2018) J/ApJ/859/101 : The supernovae Ia Pantheon sample (Scolnic+, 2018) J/ApJ/895/32 : Zwicky Transient Facility BTS. I. (Fremling+, 2020) J/ApJ/905/93 : Classif. of PS1-MDS SNe with Superphot (Hosseinzadeh+, 2020) http://outerspace.stsci.edu/display/PANSTARRS/ : Pan-STARRS1 home page Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Object Name 13- 21 A9 --- PScID Pan-STARRS1 Medium-Deep Survey (PS1-MDS) transient identifier 23- 31 A9 --- IAU IAU Name 33- 71 A39 --- CBET CBET ADS bibcode(s) 73- 80 F8.4 deg RAdeg [34.3/354] SN Right Ascension (J2000) 82- 89 F8.4 deg DEdeg [-29.4/59.7] SN Declination (J2000) 91- 96 F6.4 mag E(B-V) [0.0034/0.14] Milky Way reddening 98-110 A13 --- Type SN Type 112-120 F9.7 --- z [0/2.77]? Redshift estimate from either the transient spectra or host galaxy spectra 122-129 F8.4 deg RAHdeg ? Host Right Ascension, decimal degree (J2000) 131-138 F8.4 deg DEHdeg ? Host Declination, decimal degree (J2000) 140-142 I3 --- Npt [0/206] Number of >5σ datapoints in light curve 144-167 A24 --- Tel Telescope or source (ADS bibcode) used to acquire galaxy or SN spectra (1) 169-169 A1 --- uSup Included in unsupervised training set 171-171 A1 --- Sup Included in supervised training set -------------------------------------------------------------------------------- Note (1): Host galaxies observations with telescopes as below: MMT = the Hectospec multifiber instrument on MMT (3321 occurrences) AAT = Anglo-Australian Telescope (291 occurrences) WIYN = the WIYN telescope (208 occurrences) APO = the Apache Point Observatory 3.5m telescope (5 occurrences) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- PScID PS1-MDS Transient Identifier 11- 14 F4.2 --- pSLSN [0/1] Probability, SLSN 16- 20 F5.2 --- e_pSLSN [0/0.22] Lower uncertainty on pSLSN 22- 25 F4.2 --- E_pSLSN [0/0.3] Lower uncertainty on pSLSN 27- 30 F4.2 --- pII [0/1] Probability, Type II 32- 36 F5.2 --- e_pII [0/0.24] Lower uncertainty on pII 38- 41 F4.2 --- E_pII [0/0.21] Lower uncertainty on pII 43- 46 F4.2 --- pIIn [0/1] Probability, Type IIn 48- 52 F5.2 --- e_pIIn [0/0.26] Lower uncertainty on pIIn 54- 57 F4.2 --- E_pIIn [0/0.3] Lower uncertainty on pIIn 59- 62 F4.2 --- pIa [0/1] Probability, Type Ia SN 64- 67 F4.2 --- e_pIa [0/0.26] Lower uncertainty on pIa 69- 72 F4.2 --- E_pIa [0/0.23] Lower uncertainty on pIa 74- 77 F4.2 --- pIbc [0/1] Probability, Type Ibc 79- 83 F5.2 --- e_pIbc [0/0.22] Lower uncertainty on pIbc 85- 88 F4.2 --- E_pIbc [0/0.23] Lower uncertainty on pIbc -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- PScID PS1-MDS Transient Identifier 11- 19 A9 --- Name Object name 21- 29 A9 --- Class Spec. Class (FELT=fast-evolving luminous transient, TDE=tidal disruption event) 31- 49 A19 --- r_Class Reference for Class 51- 54 F4.2 --- pSLSN [0/0.88] Probability, Type SLSN 56- 59 F4.2 --- pII [0/0.76] Probability, Type II 61- 64 F4.2 --- pIIn [0/0.79] Probability, Type IIn 66- 69 F4.2 --- pIa [0.02/0.95] Probability, Type Ia 71- 74 F4.2 --- pIbc [0.01/0.42] Probability, Type Ibc -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 27-Jul-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line