J/ApJ/910/124    Star formation rates of low-z QSOs from 1-500um    (Xie+, 2021)

The infrared emission and vigorous star formation of low-redshift quasars. Xie Y., Ho L.C., Zhuang M.-Y., Shangguan J. <Astrophys. J., 910, 124 (2021)> =2021ApJ...910..124X 2021ApJ...910..124X
ADC_Keywords: QSOs; Active gal. nuclei; Redshifts; Abundances; Infrared; Interstellar medium Keywords: Interstellar medium ; Quasars ; AGN host galaxies Abstract: The star formation activity of the host galaxies of active galactic nuclei provides valuable insights into the complex interconnections between black hole growth and galaxy evolution. A major obstacle arises from the difficulty of estimating accurate star formation rates (SFRs) in the presence of a strong active galactic nucleus. Analyzing the 1-500µm spectral energy distributions and high-resolution mid-infrared spectra of low-redshift (z<0.5) Palomar-Green quasars with bolometric luminosity of ∼1044.5-1047.5erg/s, we find, from comparison with an independent SFR indicator based on [NeII]12.81µm and [NeIII]15.56µm, that the torus-subtracted, total infrared (8-1000µm) emission yields robust SFRs in the range of ∼1-250M/yr. Combined with available stellar mass estimates, the vast majority (∼75%-90%) of the quasars lie on or above the main sequence of local star-forming galaxies, including a significant fraction (∼50%-70%) that would qualify as starburst systems. This is further supported by the high star formation efficiencies derived from the gas content inferred from the dust masses. Inspection of high-resolution Hubble Space Telescope images reveals a wide diversity of morphological types, including a number of starbursting hosts that have not experienced significant recent dynamical perturbations. The origin of the high star formation efficiency is unknown. Description: We focus on the sample of 86 z<0.5 quasars from the Palomar-Green (PG) survey (Schmidt & Green 1983, J/ApJ/269/352), as summarized in Boroson & Green (1992ApJS...80..109B 1992ApJS...80..109B). We adopt the cosmological parameters Ωm=0.308, ΩΛ=0.692, and H0=67.8km/s/Mpc. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 80 86 Physical properties of PG quasars table2.dat 143 86 SFRs of quasar host galaxies -------------------------------------------------------------------------------- See also: J/ApJ/269/352 : Quasar evolution (Schmidt+, 1983) J/ApJS/143/277 : IRAS 1Jy sample of ultraluminous galaxies. I. (Kim+, 2002) J/ApJS/143/315 : IRAS 1Jy sample of ultraluminous gal. II. (Veilleux+, 2002) J/ApJ/666/806 : SED of Spitzer quasars (QUEST) (Netzer+, 2007) J/ApJS/177/103 : HI survey of AGNs (Ho+, 2008) J/ApJ/703/1672 : Far-IR and Hα fluxes in galaxies (Kennicutt+, 2009) J/A+A/533/A119 : GOODS-Herschel North and South catalogs (Elbaz+, 2011) J/ApJS/214/23 : IR spectra and photometry of z<0.5 quasars (Shi+, 2014) J/A+A/578/A11 : Spectrum of QSO XMMC 2028 (Brusa+, 2015) J/ApJS/219/18 : LIRAS: LoCuSS IR AGN survey (Xu+, 2015) J/ApJ/817/118 : SFR-M* relation from ZFOURGE (Tomczak+, 2016) J/ApJ/819/L27 : Stellar masses of optical & IR QSO hosts (Zhang+, 2016) J/ApJ/848/87 : CALIFA SFRs. II. Bulges & disks (Catalan-Torrecilla+, 2017) J/MNRAS/471/59 : Intrinsic AGN SEDs in PG quasars (Lani+, 2017) J/A+A/602/A123 : AGN vs. host galaxy data in COSMOS field (Lanzuisi+, 2017) J/ApJ/841/76 : Intrinsic far-IR SED of luminous AGNs (Lyu+, 2017) J/ApJS/233/22 : xCOLD GASS catalog (Saintonge+, 2017) J/MNRAS/466/3161 : AGN global star-forming properties (Shimizu+, 2017) J/ApJ/841/102 : Type 2 AGN host galaxies in Chandra-COSMOS (Suh+, 2017) J/MNRAS/478/4238 : Properties of IR-bright AGNs (Dai+, 2018) J/ApJ/854/158 : z<0.5 PG quasars IR energy distributions (Shangguan+, 2018) J/ApJ/870/104 : 1-500um obs. of nearby luminous IR gal. (Shangguan+, 2019) J/ApJ/884/136 : PAH features of star-forming gal. using Spitzer (Xie+, 2019) J/ApJ/888/78 : The ACS-AGN Catalog: AGN luminosity vs SFR (Stemo+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- ID Object identifier 13- 17 F5.3 --- z [0.025/0.472] Spectroscopic redshift from Shangguan+ (2018, J/ApJ/854/158) 19- 22 I4 Mpc DL [113/2723] Luminosity distance from Shangguan+ (2018, J/ApJ/854/158) 24- 28 F5.2 [10-7W] logL5100 [43.6/46.2] log monochromatic AGN luminosity at 5100Å from Shangguan+ (2018, J/ApJ/854/158) 30- 33 F4.2 [Msun] logMBH [6.6/10] log blackhole mass from Shangguan+ (2018, J/ApJ/854/158) 35- 39 F5.2 [Msun] logM* [9.7/12.1] log stellar mass (1) 41 A1 --- f_logM* [*] Flag on logM* (2) 43- 46 F4.2 [Sun] O/H [8.7/8.9] Oxygen abundance; 12+log(O/H) (3) 48- 51 F4.2 [Sun] e_O/H [0.1/0.14] Lower uncertainty in O/H 53- 56 F4.2 [Sun] E_O/H [0.1/0.14] Upper uncertainty in O/H 58 A1 --- l_logMgas Limit flag on logMgas 60- 64 F5.2 [Msun] logMgas [8.3/11] log gas mass from Shangguan+ (2018, J/ApJ/854/158) 66- 69 F4.2 [Msun] e_logMgas [0.2/0.5]? Lower uncertainty in logMgas 71- 74 F4.2 [Msun] E_logMgas [0.2/0.5]? Upper uncertainty in logMgas 76- 78 A3 --- Morph Morphology flag(s) of host galaxy (4) 80 A1 --- r_Morph Reference code for Morph (5) -------------------------------------------------------------------------------- Note (1): Of the quasar host galaxy from Zhang+ (2016, J/ApJ/819/L27). Note (2): Flag as follows: * = mass derived from the M*-MBH relation of Greene+ (2020ARA&A..58..257G 2020ARA&A..58..257G). Note (3): Metallicity of the quasar host galaxy estimated from the stellar mass-metallicity relation; see Section 2 for details. Note (4): Morphology flag as follows: E = elliptical (14 occurrences); D = disk (29 occurrences); M = merger (10 occurrences); U = uncertain (18 occurrences); c = companion (4 occurrences); t = tidal disturbance signatures (2 occurrences). Note (5): Reference code as follows: 1 = Bentz & Manne-Nicholas 2018ApJ...864..146B 2018ApJ...864..146B 2 = Crenshaw et al. 2003AJ....126.1690C 2003AJ....126.1690C 3 = Kim et al. 2017ApJS..232...21K 2017ApJS..232...21K 4 = Surace et al. 1998ApJ...492..116S 1998ApJ...492..116S 5 = Zhao et al. 2021ApJ...911...94Z 2021ApJ...911...94Z 6 = Zhang et al. 2016, J/ApJ/819/L27 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- ID Object identifier 13 A1 --- l_logL[NeII] Limit flag on logL[NeII] 14- 18 F5.2 [10-7W] logL[NeII] [40.2/42.81]? Log [NeII]12.81um luminosity in erg/s 20- 23 F4.2 [10-7W] e_logL[NeII] [0.02/0.3]? Lower uncertainty in logL[NeII] 25- 28 F4.2 [10-7W] E_logL[NeII] [0.02/0.3]? Upper uncertainty in logL[NeII] 30 A1 --- l_logL[NeIII] Limit flag on logL[NeIII] 31- 35 F5.2 [10-7W] logL[NeIII] [40.6/43]? Log [NeIII]15.56um luminosity in erg/s 37- 40 F4.2 [10-7W] e_logL[NeIII] [0.02/0.3]? Lower uncertainty in logL[NeIII] 42- 45 F4.2 [10-7W] E_logL[NeIII] [0.02/0.3]? Upper uncertainty in logL[NeIII] 47 A1 --- l_logL[NeV] Limit flag on logL[NeV] 48- 52 F5.2 [10-7W] logL[NeV] [40.43/42.62]? Log [NeV]14.32um luminosity in erg/s 54- 57 F4.2 [10-7W] e_logL[NeV] [0.02/0.35]? Lower uncertainty in logL[NeV] 59- 62 F4.2 [10-7W] E_logL[NeV] [0.02/0.35]? Upper uncertainty in logL[NeV] 64- 67 F4.2 --- f+ [0.05/0.76]? Fractional abundances of singly ionized Neon 69- 72 F4.2 --- e_f+ [0.03/0.24]? Lower uncertainty in f+ 74- 77 F4.2 --- E_f+ [0.03/0.24]? Upper uncertainty in f+ 79- 82 F4.2 --- f2+ [0.18/0.97]? Fractional abundances of doubly ionized Neon 84- 87 F4.2 --- e_f2+ [0.02/0.25]? Lower uncertainty in f2+ 89- 92 F4.2 --- E_f2+ [0.02/0.25]? Upper uncertainty in f2+ 94 A1 --- l_logSFRNe [l] Limit flag on logSFRNe (6) 95- 98 F4.2 [Msun/yr] logSFRNe [0.19/2.38]? Log star formation rate from neon luminosity 100-104 F5.2 [Msun/yr] lologSFRNe [-0.13/1.25]? Lower uncertainty/limit in logSFRNe (6) 106-109 F4.2 [Msun/yr] uplogSFRNe [0.14/1.51]? Upper uncertainty/limit in logSFRNe (6) 111 A1 --- l_logLIR Limit flag on logLIR 112-116 F5.2 [10-7W] logLIR [42.66/45.85] Log IR luminosity in erg/s (7) 118-121 F4.2 [10-7W] e_logLIR [0.01/0.16]? Lower uncertainty in logLIR 123-126 F4.2 [10-7W] E_logLIR [0.01/0.18]? Upper uncertainty in logLIR 128 A1 --- l_logSFRIR Limit flag on logSFRIR 129-133 F5.2 [Msun/yr] logSFRIR [-0.69/2.5] Log star formation rate from IR (7) 135-138 F4.2 [Msun/yr] e_logSFRIR [0.01/0.16]? Lower uncertainty in logSFRIR 140-143 F4.2 [Msun/yr] E_logSFRIR [0.01/0.18]? Upper uncertainty in logSFRIR -------------------------------------------------------------------------------- Note (6): lologSFRNe and uplogSFRNe are uncertainties except when the SFR is derived with neon line upper limits. In these cases there is no logSFRNe reported and the lologSFRNe and uplogSFRNe values represent the lower and upper limits of the true SFR. Note (7): In the 8-1000um band and torus-subtracted. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 13-Sep-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line