J/ApJ/910/124 Star formation rates of low-z QSOs from 1-500um (Xie+, 2021)
The infrared emission and vigorous star formation of low-redshift quasars.
Xie Y., Ho L.C., Zhuang M.-Y., Shangguan J.
<Astrophys. J., 910, 124 (2021)>
=2021ApJ...910..124X 2021ApJ...910..124X
ADC_Keywords: QSOs; Active gal. nuclei; Redshifts; Abundances; Infrared;
Interstellar medium
Keywords: Interstellar medium ; Quasars ; AGN host galaxies
Abstract:
The star formation activity of the host galaxies of active galactic
nuclei provides valuable insights into the complex interconnections
between black hole growth and galaxy evolution. A major obstacle
arises from the difficulty of estimating accurate star formation rates
(SFRs) in the presence of a strong active galactic nucleus. Analyzing
the 1-500µm spectral energy distributions and high-resolution
mid-infrared spectra of low-redshift (z<0.5) Palomar-Green quasars
with bolometric luminosity of ∼1044.5-1047.5erg/s, we find, from
comparison with an independent SFR indicator based on [NeII]12.81µm
and [NeIII]15.56µm, that the torus-subtracted, total infrared
(8-1000µm) emission yields robust SFRs in the range of
∼1-250M☉/yr. Combined with available stellar mass estimates, the
vast majority (∼75%-90%) of the quasars lie on or above the main
sequence of local star-forming galaxies, including a significant
fraction (∼50%-70%) that would qualify as starburst systems. This is
further supported by the high star formation efficiencies derived from
the gas content inferred from the dust masses. Inspection of
high-resolution Hubble Space Telescope images reveals a wide diversity
of morphological types, including a number of starbursting hosts that
have not experienced significant recent dynamical perturbations. The
origin of the high star formation efficiency is unknown.
Description:
We focus on the sample of 86 z<0.5 quasars from the
Palomar-Green (PG) survey (Schmidt & Green 1983, J/ApJ/269/352), as
summarized in Boroson & Green (1992ApJS...80..109B 1992ApJS...80..109B).
We adopt the cosmological parameters Ωm=0.308,
ΩΛ=0.692, and H0=67.8km/s/Mpc.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 80 86 Physical properties of PG quasars
table2.dat 143 86 SFRs of quasar host galaxies
--------------------------------------------------------------------------------
See also:
J/ApJ/269/352 : Quasar evolution (Schmidt+, 1983)
J/ApJS/143/277 : IRAS 1Jy sample of ultraluminous galaxies. I. (Kim+, 2002)
J/ApJS/143/315 : IRAS 1Jy sample of ultraluminous gal. II. (Veilleux+, 2002)
J/ApJ/666/806 : SED of Spitzer quasars (QUEST) (Netzer+, 2007)
J/ApJS/177/103 : HI survey of AGNs (Ho+, 2008)
J/ApJ/703/1672 : Far-IR and Hα fluxes in galaxies (Kennicutt+, 2009)
J/A+A/533/A119 : GOODS-Herschel North and South catalogs (Elbaz+, 2011)
J/ApJS/214/23 : IR spectra and photometry of z<0.5 quasars (Shi+, 2014)
J/A+A/578/A11 : Spectrum of QSO XMMC 2028 (Brusa+, 2015)
J/ApJS/219/18 : LIRAS: LoCuSS IR AGN survey (Xu+, 2015)
J/ApJ/817/118 : SFR-M* relation from ZFOURGE (Tomczak+, 2016)
J/ApJ/819/L27 : Stellar masses of optical & IR QSO hosts (Zhang+, 2016)
J/ApJ/848/87 : CALIFA SFRs. II. Bulges & disks (Catalan-Torrecilla+, 2017)
J/MNRAS/471/59 : Intrinsic AGN SEDs in PG quasars (Lani+, 2017)
J/A+A/602/A123 : AGN vs. host galaxy data in COSMOS field (Lanzuisi+, 2017)
J/ApJ/841/76 : Intrinsic far-IR SED of luminous AGNs (Lyu+, 2017)
J/ApJS/233/22 : xCOLD GASS catalog (Saintonge+, 2017)
J/MNRAS/466/3161 : AGN global star-forming properties (Shimizu+, 2017)
J/ApJ/841/102 : Type 2 AGN host galaxies in Chandra-COSMOS (Suh+, 2017)
J/MNRAS/478/4238 : Properties of IR-bright AGNs (Dai+, 2018)
J/ApJ/854/158 : z<0.5 PG quasars IR energy distributions (Shangguan+, 2018)
J/ApJ/870/104 : 1-500um obs. of nearby luminous IR gal. (Shangguan+, 2019)
J/ApJ/884/136 : PAH features of star-forming gal. using Spitzer (Xie+, 2019)
J/ApJ/888/78 : The ACS-AGN Catalog: AGN luminosity vs SFR (Stemo+, 2020)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- ID Object identifier
13- 17 F5.3 --- z [0.025/0.472] Spectroscopic redshift from
Shangguan+ (2018, J/ApJ/854/158)
19- 22 I4 Mpc DL [113/2723] Luminosity distance from
Shangguan+ (2018, J/ApJ/854/158)
24- 28 F5.2 [10-7W] logL5100 [43.6/46.2] log monochromatic AGN
luminosity at 5100Å from
Shangguan+ (2018, J/ApJ/854/158)
30- 33 F4.2 [Msun] logMBH [6.6/10] log blackhole mass from
Shangguan+ (2018, J/ApJ/854/158)
35- 39 F5.2 [Msun] logM* [9.7/12.1] log stellar mass (1)
41 A1 --- f_logM* [*] Flag on logM* (2)
43- 46 F4.2 [Sun] O/H [8.7/8.9] Oxygen abundance; 12+log(O/H) (3)
48- 51 F4.2 [Sun] e_O/H [0.1/0.14] Lower uncertainty in O/H
53- 56 F4.2 [Sun] E_O/H [0.1/0.14] Upper uncertainty in O/H
58 A1 --- l_logMgas Limit flag on logMgas
60- 64 F5.2 [Msun] logMgas [8.3/11] log gas mass from
Shangguan+ (2018, J/ApJ/854/158)
66- 69 F4.2 [Msun] e_logMgas [0.2/0.5]? Lower uncertainty in logMgas
71- 74 F4.2 [Msun] E_logMgas [0.2/0.5]? Upper uncertainty in logMgas
76- 78 A3 --- Morph Morphology flag(s) of host galaxy (4)
80 A1 --- r_Morph Reference code for Morph (5)
--------------------------------------------------------------------------------
Note (1): Of the quasar host galaxy from Zhang+ (2016, J/ApJ/819/L27).
Note (2): Flag as follows:
* = mass derived from the M*-MBH relation of Greene+ (2020ARA&A..58..257G 2020ARA&A..58..257G).
Note (3): Metallicity of the quasar host galaxy estimated from the stellar
mass-metallicity relation; see Section 2 for details.
Note (4): Morphology flag as follows:
E = elliptical (14 occurrences);
D = disk (29 occurrences);
M = merger (10 occurrences);
U = uncertain (18 occurrences);
c = companion (4 occurrences);
t = tidal disturbance signatures (2 occurrences).
Note (5): Reference code as follows:
1 = Bentz & Manne-Nicholas 2018ApJ...864..146B 2018ApJ...864..146B
2 = Crenshaw et al. 2003AJ....126.1690C 2003AJ....126.1690C
3 = Kim et al. 2017ApJS..232...21K 2017ApJS..232...21K
4 = Surace et al. 1998ApJ...492..116S 1998ApJ...492..116S
5 = Zhao et al. 2021ApJ...911...94Z 2021ApJ...911...94Z
6 = Zhang et al. 2016, J/ApJ/819/L27
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- ID Object identifier
13 A1 --- l_logL[NeII] Limit flag on logL[NeII]
14- 18 F5.2 [10-7W] logL[NeII] [40.2/42.81]? Log [NeII]12.81um
luminosity in erg/s
20- 23 F4.2 [10-7W] e_logL[NeII] [0.02/0.3]? Lower uncertainty in
logL[NeII]
25- 28 F4.2 [10-7W] E_logL[NeII] [0.02/0.3]? Upper uncertainty in
logL[NeII]
30 A1 --- l_logL[NeIII] Limit flag on logL[NeIII]
31- 35 F5.2 [10-7W] logL[NeIII] [40.6/43]? Log [NeIII]15.56um
luminosity in erg/s
37- 40 F4.2 [10-7W] e_logL[NeIII] [0.02/0.3]? Lower uncertainty in
logL[NeIII]
42- 45 F4.2 [10-7W] E_logL[NeIII] [0.02/0.3]? Upper uncertainty in
logL[NeIII]
47 A1 --- l_logL[NeV] Limit flag on logL[NeV]
48- 52 F5.2 [10-7W] logL[NeV] [40.43/42.62]? Log [NeV]14.32um
luminosity in erg/s
54- 57 F4.2 [10-7W] e_logL[NeV] [0.02/0.35]? Lower uncertainty in
logL[NeV]
59- 62 F4.2 [10-7W] E_logL[NeV] [0.02/0.35]? Upper uncertainty in
logL[NeV]
64- 67 F4.2 --- f+ [0.05/0.76]? Fractional abundances of
singly ionized Neon
69- 72 F4.2 --- e_f+ [0.03/0.24]? Lower uncertainty in f+
74- 77 F4.2 --- E_f+ [0.03/0.24]? Upper uncertainty in f+
79- 82 F4.2 --- f2+ [0.18/0.97]? Fractional abundances of
doubly ionized Neon
84- 87 F4.2 --- e_f2+ [0.02/0.25]? Lower uncertainty in f2+
89- 92 F4.2 --- E_f2+ [0.02/0.25]? Upper uncertainty in f2+
94 A1 --- l_logSFRNe [l] Limit flag on logSFRNe (6)
95- 98 F4.2 [Msun/yr] logSFRNe [0.19/2.38]? Log star formation rate
from neon luminosity
100-104 F5.2 [Msun/yr] lologSFRNe [-0.13/1.25]? Lower uncertainty/limit
in logSFRNe (6)
106-109 F4.2 [Msun/yr] uplogSFRNe [0.14/1.51]? Upper uncertainty/limit
in logSFRNe (6)
111 A1 --- l_logLIR Limit flag on logLIR
112-116 F5.2 [10-7W] logLIR [42.66/45.85] Log IR luminosity
in erg/s (7)
118-121 F4.2 [10-7W] e_logLIR [0.01/0.16]? Lower uncertainty in logLIR
123-126 F4.2 [10-7W] E_logLIR [0.01/0.18]? Upper uncertainty in logLIR
128 A1 --- l_logSFRIR Limit flag on logSFRIR
129-133 F5.2 [Msun/yr] logSFRIR [-0.69/2.5] Log star formation rate
from IR (7)
135-138 F4.2 [Msun/yr] e_logSFRIR [0.01/0.16]? Lower uncertainty in
logSFRIR
140-143 F4.2 [Msun/yr] E_logSFRIR [0.01/0.18]? Upper uncertainty in
logSFRIR
--------------------------------------------------------------------------------
Note (6): lologSFRNe and uplogSFRNe are uncertainties except when the SFR is
derived with neon line upper limits. In these cases there is no
logSFRNe reported and the lologSFRNe and uplogSFRNe values represent
the lower and upper limits of the true SFR.
Note (7): In the 8-1000um band and torus-subtracted.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 13-Sep-2022