J/ApJ/911/55       FUSE survey of H2 in the Galactic disk       (Shull+, 2021)

A Far Ultraviolet Spectroscopic Explorer survey of interstellar molecular hydrogen in the Galactic disk. Shull J.M., Danforth C.W., Anderson K.L. <Astrophys. J., 911, 55 (2021)> =2021ApJ...911...55S 2021ApJ...911...55S
ADC_Keywords: Stars, OB; Ultraviolet; Surveys; Milky Way; Extinction; Molecular data; Interstellar medium; H I data Keywords: Diffuse interstellar clouds ; Milky Way disk ; Interstellar molecules ; Ultraviolet astronomy ; Ultraviolet extinction Abstract: We report results from a Far Ultraviolet Spectrographic Explorer (FUSE) survey of interstellar molecular hydrogen (H2) in the Galactic disk toward 139 O-type and early B-type stars at Galactic latitudes |b|≤10°, with updated photometric and parallax distances. H2 absorption is measured using the far-UV Lyman and Werner bands, including strong R(0), R(1), and P(1) lines from rotational levels J=0 and J=1 and excited states up to J=5 (sometimes J=6 and 7). For each sight line, we report column densities NH2, NHI, N(J), and NH=NHI+2NH2 and the molecular fraction fH2=2NH2/NH. Our survey extends the 1977 Copernicus H2 survey up to NH∼5x1021cm-2. The lowest rotational states have excitation temperatures and rms dispersions <T01≥88±20K and <T02≥77±18K, suggesting that J=0, 1, 2 are coupled to the gas kinetic temperature. Populations of higher-J states exhibit mean excitation temperatures <T24≥237±91K and <T35≥304±108K, produced primarily by UV radiative pumping. Correlations of fH2 with E(B-V) and NH show a transition to fH2≥0.1 at NH≳1021cm-2 and E(B-V)≳0.2, interpreted with an analytic model of H2 formation-dissociation equilibrium and attenuation of the far-UV radiation field by self-shielding and dust opacity. Results of this disk survey are compared to previous FUSE studies of H2 in translucent clouds, at high Galactic latitudes, and in the Magellanic Clouds. Using updated distances to the target stars, we find average sight-line values <fH2≥0.20 and <NH/E(B-V)≥6.07x1021cm-2/mag. Description: The 139 targets in this survey were drawn primarily from FUSE programs designed to study OB stars and interstellar gas in the Milky Way. These stars have updated spectral types and both photometric and Gaia-DR2 parallax distances determined by Shull & Danforth (2019ApJ...882..180S 2019ApJ...882..180S) using new information from the Galactic O-star Spectroscopic Survey (GOSS; Maiz Apellaniz+ 2004, V/116). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 110 139 Stellar parameters and distances table2.dat 85 139 HI column density measurements table3.dat 149 169 Column densities and Doppler parameters table4.dat 74 139 Column densities and rotational temperatures -------------------------------------------------------------------------------- See also: III/274 : Galactic O-Star Spectroscopic Survey (GOSSS) (Sota+, 2014) V/116 : Galactic O star catalog (Maiz-apellaniz+, 2004) J/ApJS/93/211 : IUE survey of H I Lyα absorption. I. (Diplas+ 1994) J/ApJS/163/282 : Molecular hydrogen column densities (Wakker+, 2006) J/ApJS/176/59 : FUSE survey of OVI in the disk of the Milky Way (Bowen+, 2008) J/ApJ/711/1236 : Equivalent width of H2 from FUSE (Jensen+, 2010) J/ApJ/734/65 : CI radial velocities with HST/STIS (Jenkins+, 2011) J/A+A/613/A9 : Extinction towards Galactic O stars (Maiz Apellaniz+, 2018) J/ApJ/872/55 : OI, GeII, KrI & H abundances from HST UV sp. (Jenkins, 2019) J/ApJ/906/73 : Extinction & emission PostPlanck Era (Hensley+, 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Seq [1/139] Internal target number 5- 17 A13 --- Name Target identifier 19- 24 F6.2 deg GLON [2.26/355.36] Galactic longitude 26- 31 F6.2 deg GLAT [-23.23/13.5] Galactic latitude 33- 37 F5.2 mag Bmag [5.3/10.61] Apparent B band magnitude 39- 43 F5.2 mag Vmag [5/10.7] Apparent V band magnitude 45- 48 F4.2 mag E(B-V) [0.02/1.1] The(B-V) color excess 50- 66 A17 --- SpType Spectral type 68- 71 F4.2 kpc Dphot [0.2/9.9] Photometric distance (1) 73 A1 --- f_Dphot [b] Flag on Dphot (2) 75 A1 --- l_DGaia Limit flag on DGaia 76- 80 F5.2 kpc DGaia [0.28/14]? Parallax distance (3) 82- 85 F4.2 kpc e_DGaia [0.27/7.7]? Lower limit on DGaia 87- 91 F5.2 kpc E_DGaia [0.29/20.1]? Upper limit on DGaia 93- 94 A2 --- f_DGaia Flag on DGaia (4) 96-103 A8 --- FUSE FUSE program identifier 105-110 F6.3 ks Texp [0.059/31.6] FUSE spectroscopic exposure time -------------------------------------------------------------------------------- Note (1): Based on GOSS photometry, extinctions, and spectral types and a new set of absolute magnitudes (see Shull & Danforth 2019ApJ...882..180S 2019ApJ...882..180S). Note (2): Flag as follows: b = No GOSS data therefore photometric distance based on photometry and spectral type in the literature. Note (3): Based on parallaxes and errors from the Gaia-DR2 archive, after adding a constant parallax offset of 0.03mas. Note (4): Flag as follows: u = uncertain flag. dp = data problem. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Seq [1/139] Internal target number 4- 18 A15 --- Name Target identifier 20- 23 F4.2 mag E(B-V) [0.02/1.1] The(B-V) color excess (1) 25- 29 F5.2 [cm-2] logNHI-A [20.5/21.7] Adopted log HI column density (2) 31- 35 F5.2 [cm-2] logNHI-S [20.9/21.5]? log HI column density from Shull & Van Steenberg 1985ApJ...294..599S 1985ApJ...294..599S 37- 40 F4.2 [cm-2] e_logNHI-S [0.05/0.15]? Uncertainty in logNHI-S 42- 46 F5.2 [cm-2] logNHI-D [20.56/21.65]? log HI column density from Diplas & Savage, 1994, J/ApJS/93/211 48- 51 F4.2 [cm-2] e_logNHI-D [0.06/0.23]? Uncertainty in logNHI-D 53- 57 F5.2 [cm-2] logNHI-J [20.55/21.5]? log HI column density from Jenkins 2019, J/ApJ/872/55 59- 62 F4.2 [cm-2] E_logNHI-J [0.03/0.1]? Upper uncertainty in logNHI-J 64- 67 F4.2 [cm-2] e_logNHI-J [0.02/0.13]? Lower uncertainty in logNHI-J 69- 73 F5.2 [cm-2] logNHI-O [20.8/21.6]? Other log HI column density 75- 78 F4.2 [cm-2] e_logNHI-O [0.05/0.3]? Uncertainty in logNHI-O 80- 85 A6 --- r_logNHI-O Reference for logNHI-O (3) -------------------------------------------------------------------------------- Note (1): Updated values of color excess (Shull & Danforth 2019ApJ...882..180S 2019ApJ...882..180S) were derived using digital photometry, visual extinction, and new spectral types from the Galactic O-star Spectroscopic Survey (Maiz Apellaniz+ 2004, V/116 ; Sota+ 2011 and 2014, III/274). Note (2): The adopted source for NHI was selected in priority order of: J19 (Jenkins, J/ApJ/872/55 ; 57 stars), DS94 (Diplas & Savage 1994, J/ApJS/93/211 ; 51 stars), FM90 (Fitzpatrick & Massa 1990ApJS...72..163F 1990ApJS...72..163F ; 2 stars), and three other sources (3 stars). For 26 stars that lack fits to Lyα profiles, we estimated NHI by scaling with color excess E(B-V); see Section 2.1. Note (3): Reference as follows: Scaled = scaled estimate from NHI from E(B-V). FM90 = Fitzpatrick & Massa (1990ApJS...72..163F 1990ApJS...72..163F); Rat02 = Rachford et al. (2002ApJ...577..221R 2002ApJ...577..221R); Han92 = Hanson et al. (1992ApJ...392..571H 1992ApJ...392..571H); Sno96 = Snow et al. (1996ApJ...465..245S 1996ApJ...465..245S). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Seq [1/139] Internal target number 5- 18 A14 --- Target Target identifier 20 A1 --- f_Target [bc] Flag on Target (1) 22- 26 F5.2 [cm-2] logN0 [16.8/21.1]? log J=0 rotational state column density (2) 28- 31 F4.2 [cm-2] E_logN0 [0.05/0.15]? Upper uncertainty in logN0 33- 36 F4.2 [cm-2] e_logN0 [0.05/0.15]? Lower uncertainty in logN0 38- 42 F5.2 [cm-2] logN1 [17.3/20.8]? log J=1 rotational state column density (2) 44- 47 F4.2 [cm-2] E_logN1 [0.05/0.15]? Upper uncertainty in logN1 49- 52 F4.2 [cm-2] e_logN1 [0.05/0.15]? Lower uncertainty in logN1 54- 58 F5.2 [cm-2] logN2 [14.36/19.64]? log J=2 rotational state column density (2) 60- 63 F4.2 [cm-2] E_logN2 [0.03/1.5]? Upper uncertainty in logN2 65- 68 F4.2 [cm-2] e_logN2 [0.04/0.5]? Lower uncertainty in logN2 70- 74 F5.2 [cm-2] logN3 [14.93/18.24]? log J=3 rotational state column density (2) 76- 79 F4.2 [cm-2] E_logN3 [0.04/1.9]? Upper uncertainty in logN3 81- 84 F4.2 [cm-2] e_logN3 [0.04/0.8]? Lower uncertainty in logN3 86- 90 F5.2 [cm-2] logN4 [13.95/16.93] log J=4 rotational state column density (2) 92- 95 F4.2 [cm-2] E_logN4 [0.02/1.9]? Upper uncertainty in logN4 97-100 F4.2 [cm-2] e_logN4 [0.02/0.7]? Lower uncertainty in logN4 102 A1 --- l_logN5 Limit flag on logN5 104-108 F5.2 [cm-2] logN5 [13.88/16.68]? log J=5 rotational state column density (2) 110-113 F4.2 [cm-2] E_logN5 [0.03/1.4]? Upper uncertainty in logN5 115-118 F4.2 [cm-2] e_logN5 [0.02/0.3]? Lower uncertainty in logN5 120 A1 --- l_logN6 Limit flag on logN6 122-126 F5.2 [cm-2] logN6 [13.53/15.71]? log J=6 rotational state column density (2) 128-131 F4.2 [cm-2] E_logN6 [0.04/0.2]? Upper uncertainty in logN6 133-136 F4.2 [cm-2] e_logN6 [0.04/0.2]? Lower uncertainty in logN6 138-141 F4.1 km/s b [2.8/20]? Doppler parameter 143-145 F3.1 km/s E_b [0.3/4.4]? Upper uncertainty in b 147-149 F3.1 km/s e_b [0.4/3.7]? Lower uncertainty in b -------------------------------------------------------------------------------- Note (1): Flag as follows: b = In 15 sight lines, multiple velocity components were observable and measured in high-J states. We report individual column densities, denoted as "blue and red" components, and sum them to find total column densities. c = A few targets have no listed column densities N(2) or N(3). In several cases this was a result of poor data quality, so that lines from J≥2 could not be fitted accurately. In other cases, the accessible (unblocked) lines from J=2 and J=3 were highly saturated, with equivalent widths of 200-300mÅ and large effective Doppler parameters (b≥10 km/s) likely produced by unresolved velocity components. When equivalent widths of all the accessible lines lie on the "flat portion" of the curve of growth, errors can exceed ±0.40 for log N=16-17 and ±0.50 for logN=17-19. Note (2): Derived from curve-of-growth fitting with Doppler parameter and damping wings for lines from J=0 and J=1. No value is listed when b was poorly determined. Error bars on low-J states (J=0,1 and sometimes J=2,3) depend on data quality (see footnote in Table 3). In damping-wing fits, errors on logN typically range from ±0.03 to ±0.10. Six targets had detectable column densities in J=7: #48 with logN(7)=15.54±0.15, #52 with logN(7)=14.47±0.05, #88 with logN(7)=14.14±0.06, #116 with logN(7)=14.29±0.11, #127 with logN(7)=14.25±0.05, and #137 with logN(7)=15.43±0.15 (15.32 in blue component and 14.80 in red component). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Seq [1/139] Internal target number 5- 18 A14 --- Target Target identifier 20- 24 F5.2 [cm-2] logNH2 [17.48/21.17] log H2 column density (1) 26- 28 I3 K T01 [40/159] Rotational excitation temperature from N1/N0 ratio (2) 30- 32 I3 K T02 [44/331]? Rotational excitation temperature from N2/N0 ratio (2) 34- 36 I3 K T24 [118/582]? Rotational excitation temperature from N4/N2 ratio (2) 38- 41 I4 K T35 [171/1358]? Rotational excitation temperature from N5/N3 ratio (2) 43- 47 F5.2 [cm-2] logNHI [20.55/21.65] log HI column density (1) 48 A1 --- f_logNHI [*] Flag on logNHI (3) 50- 54 F5.2 [cm-2] logNH [20.55/21.74] log H column density (1) 56- 59 F4.2 kpc Dphot [0.21/9.85] Photometric distance 61- 65 F5.3 cm-3 nH [0.02/3.9] Mean total hydrogen density along sight line 67- 72 F6.4 --- fH2 [0.0017/0.747] Molecular fraction (4) 74 I1 --- Note [1/3] S/N ratio level (5) -------------------------------------------------------------------------------- Note (1): Values of N(0) and N(1) come from fitting damping-wing Voigt profiles of R(0), R(1), and P(1) lines. Their errors depend on data quality. Neutral hydrogen column densities are taken from previous surveys by Diplas & Savage (1994, J/ApJS/93/211), Jenkins (2019, J/ApJ/872/55), Fitzpatrick & Massa (1990ApJS...72..163F 1990ApJS...72..163F), and several individual papers. Details are discussed in Section 2.1 and Table 2 Note (2): As described in Sections 3.4 and 3.5. Note (3): Flag as follows: * = No Lyα fits. We use the relation, NH=(5.8e21cm-2/mag)E(B-V) from the Copernicus survey (Savage+ 1997ApJ...216..291S 1997ApJ...216..291S). Note (4): Defined by fH2=2NH2/[NHI+2NH2]. Note (5): Note as follows: 1 = S/N≥15 with errors of ±0.03-0.05 on logN; 2 = 5≤S/N≤15 with errors of ±0.05-0.10; 3 = S/N≤5, with errors of ±0.10-0.20. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 11-Oct-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line