J/ApJ/918/78   Neutrinos in coincidence with GWs from LIGO/Virgo   (Abe+, 2021)

Search for neutrinos in coincidence with gravitational wave events from the LIGO-Virgo O3a observing run with the Super-Kamiokande detector. Abe K., Bronner C., Hayato Y., Ikeda M., Imaizumi S., Kameda J., Kanemura Y., Kataoka Y., Miki S., Miura M., Moriyama S., Nagao Y., Nakahata M., Nakayama S., Okada T., Okamoto K., Orii A., Pronost G., Sekiya H., Shiozawa M., Sonoda Y., Suzuki Y., Takeda A., Takemoto Y., Takenaka A., Tanaka H., Watanabe S., Yano T., Han S., Kajita T., Okumura K., Tashiro T., Wang R., Xia J., Megias G.D., Bravo-Berguno D., Labarga L., Marti L., Zaldivar B., Pointon B.W., Blaszczyk F.D.M., Kearns E., Raaf J.L., Stone J.L., Wan L., Wester T., Bian J., Griskevich N.J., Kropp W.R., Locke S., Mine S., Smy M.B., Sobel H.W., Takhistov V., Weatherly P., Hill J., Kim J.Y., Lim I.T., Park R.G., Bodur B., Scholberg K., Walter C.W., Bernard L., Coffani A., Drapier O., El Hedri S., Giampaolo A., Gonin M., Mueller T.A., Paganini P., Quilain B., Ishizuka T., Nakamura T., Jang J.S., Learned J.G., Anthony L.H.V., Martin D.G.R., Sztuc A.A., Uchida Y., Berardi V., Catanesi M.G., Radicioni E., Calabria N.F., Machado L.N., De Rosa G., Collazuol G., Iacob F., Lamoureux M., Ospina N., Ludovici L., Maekawa Y., Nishimura Y., Cao S., Friend M., Hasegawa T., Ishida T., Jakkapu M., Kobayashi T., Matsubara T., Nakadaira T., Nakamura K., Oyama Y., Sakashita K., Sekiguchi T., Tsukamoto T., Kotsar Y., Nakano Y., Ozaki H., Shiozawa T., Suzuki A.T., Takeuchi Y., Yamamoto S., Ali A., Ashida Y., Feng J., Hirota S., Kikawa T., Mori M., Nakaya T., Wendell R.A., Yasutome K., Fernandez P., Mccauley N., Mehta P., Pritchard A., Tsui K.M., Fukuda Y., Itow Y., Menjo H., Niwa T., Sato K., Tsukada M., Mijakowski P., Jiang J., Jung C.K., Vilela C., Wilking M.J., Yanagisawa C., Hagiwara K., Harada M., Horai T., Ishino H., Ito S., Koshio Y., Kitagawa H., Ma W., Piplani N., Sakai S., Kuno Y., Barr G., Barrow D., Cook L., Goldsack A., Samani S., Simpson C., Wark D., Nova F., Boschi T., Di Lodovico F., Migenda J., Molina Sedgwick S., Taani M., Zsoldos S., Yang J.Y., Jenkins S.J., Malek M., Mcelwee J.M., Stone O., Thiesse M.D., Thompson L.F., Okazawa H., Kim S.B., Yu I., Nishijima K., Koshiba M., Iwamoto K., Nakajima Y., Ogawa N., Yokoyama M., Martens K., Vagins M.R., Izumiyama S., Kuze M., Tanaka M., Yoshida T., Inomoto M., Ishitsuka M., Ito H., Matsumoto R., Ohta K., Shinoki M., Martin J.F., Tanaka H.A., Towstego T., Akutsu R., Hartz M., Konaka A., De Perio P., Prouse N.W., Chen S., Xu B.D., Posiadala-Zezula M., Hadley D., Richards B., Jamieson B., Walker J., Minamino A., Okamoto K., Pintaudi G., Sano S., Sasaki R., Ichikawa A.K., Nakamura K., The Super-Kamiokande Collaboration <Astrophys. J., 918, 78 (2021)> =2021ApJ...918...78A 2021ApJ...918...78A
ADC_Keywords: Gravitational wave; Stars, neutron; Black holes; Neutrino Keywords: Neutrino astronomy ; Gravitational wave astronomy ; High energy astrophysics ; Black holes ; Compact objects ; Neutron stars ; Transient sources Abstract: The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves detected by the LIGO-Virgo Collaboration (LVC). Both low-energy (7-100MeV) and high-energy (0.1-105GeV) samples were analyzed in order to cover a very wide neutrino spectrum. Follow-ups of 36 (out of 39) gravitational waves reported in the GWTC-2 catalog were examined; no significant excess above the background was observed, with 10 (24) observed neutrinos compared with 4.8 (25.0) expected events in the high-energy (low- energy) samples. A statistical approach was used to compute the significance of potential coincidences. For each observation, p-values were estimated using neutrino direction and LVC sky map; the most significant event (GW190602_175927) is associated with a post-trial p-value of 7.8% (1.4σ). Additionally, flux limits were computed independently for each sample and by combining the samples. The energy emitted as neutrinos by the identified gravitational wave sources was constrained, both for given flavors and for all flavors assuming equipartition between the different flavors, independently for each trigger and by combining sources of the same nature. Description: Super-Kamiokande (SK) is a water Cerenkov detector located in the Mozumi mine in Gifu Prefecture, Japan (see Section 2). SK is sensitive to neutrinos with energies ranging from several MeV to TeV. The experiment has been operating since 1996, and data taking can be separated into six distinct periods, from SK-I to SK-VI. In this paper focused on the third observing run (O3a) LIGO/Virgo Collaboration (LVC) gravitational waves events, only data from SK-V (2019 January-2020 July) were used for analysis, as this is covering the full O3 period. The high-energy samples (HE-ν) correspond to neutrinos with Eν>100MeV. The fully contained (FC) and partially contained (PC) samples have a reconstructed neutrino interaction vertex inside the fiducial volume of the inner detector (ID). The separation between FC and PC is based on the number of effective PMT hits in OD (<16 hits for FC, ≥16 hits for PC). The low-energy sample (LE-ν) corresponds to events with energy between 7 and 100MeV. See Section 2.1. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 65 39 Summary of all gravitational waves (GW) triggers from the O3a observation run table2.dat 66 10 List of selected SK HE-ν events in time coincidence with GW triggers from O3a observation run table4.dat 561 39 Data release table for the 39 triggers -------------------------------------------------------------------------------- See also: J/ApJS/245/15 : Swift XRT follow-up of LIGO/Virgo GW triggers (Klingler+, 2019) J/ApJ/915/86 : Swift & Fermi GRBs with LIGO-Virgo run O3a data (Abbott+, 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Name Trigger name 17 A1 --- f_Name Flag on name (1) 19- 37 A19 --- Date Alert time (UTC) 39- 42 A4 --- Type Event type 44- 49 F6.1 Mpc Dist [156.8/5184] Mean distance 51- 53 I3 s Time [0/995] SK live time in the 1000s time window 55- 56 I2 --- FC [0/1]?=-1 Observed number of event in HE-ν fully contained sample 58- 59 I2 --- PC [0]?=-1 Observed number of event in HE-ν partially contained sample 61- 62 I2 --- UPMU [0/1]?=-1 Observed number of event in the UPMU sample (2) 64- 65 I2 --- LE [0/3]?=-1 Observed number of event in LE-ν sample -------------------------------------------------------------------------------- Note (1): Flag as follows: a = The low-energy sample is not used because of high-voltage issues. b = The detector was not taking data owing to calibrations or maintenance. Note (2): The muons entering the detector can originate from muon neutrino interactions in the rock surrounding the detector. As such events would be indistinguishable from downward-going cosmic-ray muons, only events with upward-going direction are considered, hence the name UPMU (for "Upward-going muons"). Events are either through-going (with a requirement on track length >7m) or stopping in the detector (with a requirement on reconstructed muon momentum >1.6GeV). Further details are documented in Ashie et al. (2005PhRvD..71k2005A 2005PhRvD..71k2005A). See Section 2.1. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Name Trigger name 17- 20 A4 --- Set Sample type ("FC": fully contained or "UPMU":"Upward-going muons") 22- 28 F7.2 s DelT [-327.7/412] Timing (Δt=tν-tGW) 30- 33 F4.2 GeV Ereco [0.19/9.6] Energy 35- 40 F6.2 deg RAdeg [54/353] Right ascension (J2000) 42- 47 F6.2 deg DEdeg [-59/30] Declination (J2000) 49- 53 F5.2 deg sigma [2/92.6] σang value 55- 60 F6.2 % pSpace [1.7/100] Spatial component pspace (1) 62- 66 F5.2 % p [0.2/12.7] p-value (1) -------------------------------------------------------------------------------- Note (1): The significance of a given observation in HE-ν samples can be quantified in terms of p-value. The latter can be divided into a temporal component ptime that is evaluating the probability to observe at least one SK event in time coincidence with the GW and a spatial component pspace comparing the direction of reconstructed neutrinos with the GW localization: p=ptimexpspace. See Section 4.1. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Name GW trigger identifier 17- 20 I4 yr GW.Y [2019] UTC Year of the trigger 22- 23 I2 "month" GW.M UTC Month of the trigger 25- 26 I2 d GW.D UTC Day of the trigger 28- 29 I2 h GW.h UTC Hour of the trigger 31- 32 I2 min GW.m UTC Minute of the trigger 34- 35 I2 s GW.s UTC Second of the trigger 37- 43 F7.1 deg2 Area [20/25902] Surface of the 90% containment of GW localization (GW_SKYAREA90) 45- 50 F6.1 Mpc Dist [156.8/5184] Mean estimate of GW source distance (GW_DISTANCE) 52- 56 F5.1 s Ltime [0/994.5] SK livetime over the selected 1000s time window (SK_LIVETIME) 58- 59 I2 --- FC [/1]?=-1 Number of HE-nu/FC observed events (SKFCOBSERVED) (3) 61- 67 F7.4 --- NfcE [/0.2]?=-1 Number of HE-nu/FC expected background events (SKFCEXPECTED) (3) 69- 70 I2 --- PC [/0]?=-1 Number of HE-nu/PC observed events (SKPCOBSERVED) (3) 72- 78 F7.4 --- NpcE [/0.008]?=-1 Number of HE-nu/PC expected background events (SKPCEXPECTED) (3) 80- 81 I2 --- UPMU [/1]?=-1 Number of HE-nu/UPMU observed events (SKUPMUOBSERVED) (3) 83- 89 F7.4 --- NupmuE [/0.02]?=-1 Number of HE-nu/UPMU expected background events (SKUPMUEXPECTED) (3) 91- 92 I2 --- LE [/3]?=-1 Number of LE-nu observed events (SKLOWEOBSERVED) (3) 94- 99 F6.3 --- NleE [/0.8]?=-1 Number of LE-nu expected background events (SKLOWEEXPECTED) (3) 101- 110 E10.4 GeV/cm2 E2nueFC [2017/3854]? HE-nu/FC 90% upper limit on E2 dn/dE for nue (E2PHI90NUEFC) (4) 112- 121 E10.4 GeV/cm2 E2bnueFC [3259/8066]? HE-nu/FC 90% upper limit on E2 dn/dE for nuebar (E2PHI90NUEBFC) (4) 123- 132 E10.4 GeV/cm2 E2nuebnueFC [2550/5215]? HE-nu/FC 90% upper limit on E2 dn/dE for nue+nuebar (E2PHI90NUENUEBFC) (4) 134- 143 E10.4 GeV/cm2 E2numuFC [3563/6606]? HE-nu/FC 90% upper limit on E2 dn/dE for numu (E2PHI90NUMUFC) (4) 145- 154 E10.4 GeV/cm2 E2bnumuFC [8195/16053]? HE-nu/FC 90% upper limit on E2 dn/dE for numubar (E2PHI90NUMUBFC) (4) 156- 165 E10.4 GeV/cm2 E2numbnumFC [5167/9231]? HE-nu/FC 90% upper limit on E2 dn/dE for numu+numubar (E2PHI90NUMUNUMUBFC) (4) 167- 176 E10.4 GeV/cm2 E2nuePC [8123/49619]? HE-nu/PC 90% upper limit on E2 dn/dE for nue (E2PHI90NUEPC) (4) 178- 187 E10.4 GeV/cm2 E2bnuePC [28278/223110]? HE-nu/PC 90% upper limit on E2 dn/dE for nuebar (E2PHI90NUEBPC) (4) 189- 198 E10.4 GeV/cm2 E2nuebnuePC [13740/71472]? HE-nu/PC 90% upper limit on E2 dn/dE for nue+nuebar (E2PHI90NUENUEBPC) (4) 200- 209 E10.4 GeV/cm2 E2numuPC [2525/5812]? HE-nu/PC 90% upper limit on E2 dn/dE for numu (E2PHI90NUMUPC) (4) 211- 220 E10.4 GeV/cm2 E2bnumuPC [6219/10624]? HE-nu/PC 90% upper limit on E2 dn/dE for numubar (E2PHI90NUMUBPC) (4) 222- 231 E10.4 GeV/cm2 E2numbnumPC [3568/7057]? HE-nu/PC 90% upper limit on E2 dn/dE for numu+numubar (E2PHI90NUMUNUMUBPC) (4) 233- 242 E10.4 GeV/cm2 E2numuUPMU [31/44]? HE-nu/UPMU 90% upper limit on E2 dn/dE for numu (E2PHI90NUMUUPMU) (4) 244- 253 E10.4 GeV/cm2 E2bnumuUPMU [39/93]? HE-nu/UPMU 90% upper limit on E2 dn/dE for numubar (E2PHI90NUMUBUPMU) (4) 255- 264 E10.4 GeV/cm2 E2numubnumuUPMU [36/59]? HE-nu/UPMU 90% upper limit on E2 dn/dE for numu+numubar (E2PHI90NUMUNUMUBUPMU) (4) 266- 275 E10.4 GeV/cm2 E2nue [1815/3888]? HE-nu/combined 90% upper limit on E2 dn/dE for nue (E2PHI90NUECOMBINED) (4) 277- 286 E10.4 GeV/cm2 E2bnue [3126/8283]? HE-nu/combined 90% upper limit on E2 dn/dE for nuebar (E2PHI90NUEBCOMBINED) (4) 288- 297 E10.4 GeV/cm2 E2nuebnue [2296/5273]? HE-nu/combined 90% upper limit on E2 dn/dE for nue+nuebar (E2PHI90NUENUEBCOMBINED) (4) 299- 308 E10.4 GeV/cm2 E2numu [31/3660]? HE-nu/combined 90% upper limit on E2 dn/dE for numu (E2PHI90NUMUCOMBINED) (4) 310- 319 E10.4 GeV/cm2 E2bnumu [40/6683]? HE-nu/combined 90% upper limit on E2 dn/dE for numubar (E2PHI90NUMUBCOMBINED) (4) 321- 330 E10.4 GeV/cm2 E2numubnumu [36/4722]? HE-nu/combined 90% upper limit on E2 dn/dE for numu+numubar (E2PHI90NUMUNUMUBCOMBINED) (4) 332- 341 E10.4 10-7W EISOnue ? HE-nu/combined 90% upper limit on Eiso for nue assuming E-2 spectrum (EISO90NUECOMBINED) (5) 343- 352 E10.4 10-7W EISObnue ? HE-nu/combined 90% upper limit on Eiso for nuebar assuming E-2 spectrum (EISO90NUEBCOMBINED) (5) 354- 363 E10.4 10-7W EISOnuebnue ? HE-nu/combined 90% upper limit on Eiso for nue+nuebar assuming E-2 spectrum (EISO90NUENUEBCOMBINED) (5) 365- 374 E10.4 10-7W EISOnumu ? HE-nu/combined 90% upper limit on Eiso for numu assuming E-2 spectrum (EISO90NUMUCOMBINED) (5) 376- 385 E10.4 10-7W EISObnumu ? HE-nu/combined 90% upper limit on Eiso for numubar assuming E-2 spectrum (EISO90NUMUBCOMBINED) (5) 387- 396 E10.4 10-7W EISOnumubnumu ? HE-nu/combined 90% upper limit on Eiso for numu+numubar assuming E-2 spectrum (EISO90NUMUNUMUBCOMBINED) (5) 398- 407 E10.4 10-7W EISOallHE ? HE-nu/combined 90% upper limit on Eiso for all-flavors assuming E-2 spectrum (EISO90ALLCOMBINED) (5)(6) 409- 418 E10.4 10-7W EISOallG3 ? HE-nu/combined 90% upper limit on Eiso for all-flavors assuming E-3 spectrum (EISO90ALLCOMBINED_GAMMA3) (5) (6) 420- 429 E10.4 cm-2 FnueFermi ? LE-nu 90% upper limit on Φ for nue assuming Fermi-Dirac spectrum (FLUENCE90LOWENUE_FERMIDIRAC) 431- 440 E10.4 cm-2 FbnueFermi ? LE-nu 90% upper limit on Φ for nuebar assuming Fermi-Dirac spectrum (FLUENCE90LOWENUEB_FERMIDIRAC) 442- 451 E10.4 cm-2 FnumnutauFermi ? LE-nu 90% upper limit on Φ for numu+nutau assuming Fermi-Dirac spectrum (FLUENCE90LOWENUX_FERMIDIRAC) 453- 462 E10.4 cm-2 FbnumubnuatuFermi ? LE-nu 90% upper limit on Φ for numubar+nutaubar assuming Fermi-Dirac spectrum (FLUENCE90LOWENUXB_FERMIDIRAC) 464- 473 E10.4 cm-2 FnueFlat ? LE-nu 90% upper limit on Φ for nue assuming flat spectrum (FLUENCE90LOWENUE_FLAT) 475- 484 E10.4 cm-2 FbnueFlat ? LE-nu 90% upper limit on Φ for nuebar assuming flat spectrum (FLUENCE90LOWENUEB_FLAT) 486- 495 E10.4 cm-2 FnumunutauFlat ? LE-nu 90% upper limit on Φ for numu+nutau assuming flat spectrum (FLUENCE90LOWENUX_FLAT) 497- 506 E10.4 cm-2 FbnumubnutauFlat ? LE-nu 90% upper limit on Φ for numubar+nutaubar assuming flat spectrum (FLUENCE90LOWENUXB_FLAT) 508- 517 E10.4 10-7W EISOnueLE ? LE-nu 90% upper limit on Eiso for nue assuming Fermi-Dirac spectrum (EISO90LOWENUE_FERMIDIRAC) (5) 519- 528 E10.4 10-7W EISObnueLE ? LE-nu 90% upper limit on Eiso for nuebar assuming Fermi-Dirac spectrum (EISO90LOWENUEB_FERMIDIRAC) (5) 530- 539 E10.4 10-7W EISOnumunutauLE ? LE-nu 90% upper limit on Eiso for numu+nutau assuming Fermi-Dirac spectrum (EISO90LOWENUX_FERMIDIRAC) (5) 541- 550 E10.4 10-7W EISObnumubnutauLE ? LE-nu 90% upper limit on Eiso for numubar+nutaubar assuming Fermi-Dirac spectrum (EISO90LOWENUXB_FERMIDIRAC) (5) 552- 561 E10.4 10-7W EISOAllLE ? LE-nu 90% upper limit on Eiso for all-flavors assuming Fermir-Dirac spectrum (EISO90LOWEALL_FERMIDIRAC) (5)(6) -------------------------------------------------------------------------------- Note (3): In the 1000s time window (set to -1 if no observation was made). Note (4): Assuming E-2 spectrum. Note (5): In units of erg. Note (6): Assuming equipartition between all neutrino flavors. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 16-Jan-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line