J/ApJ/921/53 IGRINS YSO survey. I. PMS stars in Tau-Aur (Lopez-Valdivia+, 2021)
The IGRINS YSO Survey.
I. Stellar parameters of pre-main-sequence stars in Taurus-Auriga.
Lopez-Valdivia R., Sokal K.R., Mace G.N., Kidder B.T., Hussaini M.,
Nofi L., Prato L., Johns-Krull C.M., Oh H., Lee J.-J., Park C., Oh J.S.,
Kraus A., Kaplan K.F., Llama J., Mann A.W., Kim H., Gully-Santiago M.A.,
Lee H.-I., Pak S., Hwang N., Jaffe D.T.
<Astrophys. J., 921, 53 (2021)>
=2021ApJ...921...53L 2021ApJ...921...53L
ADC_Keywords: Stars, pre-main sequence; YSOs; Spectra, infrared;
Effective temperatures; Magnetic fields; Rotational velocities
Keywords: Fundamental parameters of stars ; Infrared sources ;
Pre-main sequence stars ; High resolution spectroscopy
Abstract:
We present fundamental parameters for 110 canonical K- and M-type
(1.3-0.13M☉) Taurus-Auriga young stellar objects (YSOs). The
analysis produces a simultaneous determination of effective
temperature (Teff), surface gravity (logg), magnetic-field strength
(B), and projected rotational velocity (vsini). Our method employed
synthetic spectra and high-resolution (R∼45000) near-infrared spectra
taken with the Immersion GRating INfrared Spectrometer (IGRINS) to fit
specific K-band spectral regions most sensitive to those parameters.
The use of these high-resolution spectra reduces the influence of
distance uncertainties, reddening, and non-photospheric continuum
emission on the parameter determinations. The median total
(fit+systematic) uncertainties were 170K, 0.28dex, 0.60kG, 2.5km/s for
Teff, logg, B, and vsini, respectively. We determined B for 41 Taurus
YSOs (upper limits for the remainder) and find systematic offsets
(lower Teff, higher logg and vsini) in parameters when B is measurable
but not considered in the fit. The average logg for the Class II and
Class III objects differs by 0.23±0.05dex, which is consistent with
Class III objects being the more evolved members of the star-forming
region. However, the dispersion in logg is greater than the
uncertainties, which highlights how the YSO classification correlates
with age (logg), yet there are exceptionally young (lower logg)
Class III YSOs and relatively old (higher logg) Class II YSOs with
unexplained evolutionary histories. The spectra from this work are
provided in an online repository along with TW Hydrae Association
comparison objects and the model grid used in our analysis.
Description:
We have employed the Immersion GRating INfrared Spectrometer (IGRINS)
to survey the Taurus-Auriga star-forming region and determine YSO
properties. With its broad spectral grasp (1.45-2.5um) at high
resolution (R∼45000), IGRINS simultaneously observes numerous spectral
features of YSOs.
IGRINS has increased its scientific value by traveling between
McDonald Observatory, the Lowell Discovery Telescope (LDT), and the
Gemini South telescope.
More than 500 single-visit observations of 139 Taurus YSOs (selected
from Luhman+ 2010, J/ApJS/186/111 and 2017, J/AJ/153/46) were observed
with IGRINS on the McDonald 2.7m telescope and LDT between 2014 and
2017. We visually checked the K-band spectrum of these 139 YSOs, and
we excluded objects with shallow (<2%) lines due to high veiling or
vsini values. After this cleaning step, our final sample (see Table 1)
contained 119 YSOs (84 Class II and 35 Class III). The final combined
spectrum of each target was made up of between 1 and 10 epochs, with a
median value of 4 epochs.
In 2018, we observed members of the TW Hydrae Association (TWA) while
IGRINS visited the 8.1m Gemini South telescope. All TWA observations
were single-epoch and final combined spectra were not produced. The
collection of IGRINS spectra is available from the Harvard Dataverse.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 127 119 Compiled information and stellar parameters
determined for the 119 stars in our Taurus YSO sample
sp/* . 220 Reduced IGRINS spectra, Taurus-Auriga;
individual files in FITS format
--------------------------------------------------------------------------------
See also:
II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)
I/345 : Gaia DR2 (Gaia Collaboration, 2018)
J/ApJS/101/117 : UBVRIJHKLMNQ photometry in Taurus-Auriga (Kenyon+ 1995)
J/ApJ/525/466 : Young low-mass stars and BDs in IC 348 (Luhman+, 1999)
J/ApJ/593/1093 : IC 348 membership (Luhman+, 2003)
J/other/ARA+A/42.685 : Young stars near the Sun (Zuckerman+, 2004)
J/AJ/131/1574 : Infrared photometry of IC348 members (Lada+, 2006)
J/ApJ/671/1784 : Ori OB1 IRAC/MIPS observations (Hernandez+, 2007)
J/MNRAS/389/585 : Fundamental parameters of M dwarfs (Casagrande+, 2008)
J/ApJ/704/531 : The coevality of young binary systems (Kraus+, 2009)
J/ApJS/186/111 : Spitzer observations of Taurus members (Luhman+, 2010)
J/ApJS/186/259 : Taurus Spitzer survey: new candidate members (Rebull+, 2010)
J/ApJ/731/8 : Multiple star formation in Taurus-Auriga (Kraus+, 2011)
J/ApJ/745/119 : Companions to young stars. I. ChaI & Tau (Nguyen+, 2012)
J/ApJ/779/188 : Spectra of nearby late K and M Kepler stars (Mann+, 2013)
J/ApJS/208/9 : Intrinsic colors & temperatures of PMS stars (Pecaut+, 2013)
J/A+A/556/A15 : Effective temperature scale of M dwarfs (Rajpurohit+, 2013)
J/ApJ/794/125 : IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)
J/ApJ/784/126 : IR photometry of all known members in Taurus (Esplin+, 2014)
J/ApJ/786/97 : Photospheric properties of T Tauri stars (Herczeg+, 2014)
J/AJ/147/85 : Solar neighborhood. XXXIII. 45 M dwarfs (Riedel+, 2014)
J/A+A/580/A26 : T Tauri star population in Lupus (Galli+, 2015)
J/ApJ/804/64 : Empirical and model parameters of 183 M dwarfs (Mann+, 2015)
J/ApJ/800/85 : Teff, radii and luminosities of cool dwarfs (Newton+, 2015)
J/ApJ/838/150 : The Taurus-Auriga ecosystem. I. (Kraus+, 2017)
J/AJ/153/46 : Spectroscopy of candidate members in Taurus (Luhman+, 2017)
J/ApJ/859/33 : GOBELINS. IV. VLBA obs. of Taurus (Galli+, 2018)
J/AJ/156/271 : The stellar membership of the Taurus SFR (Luhman, 2018)
J/A+A/620/A180 : Stellar properties of M dwarfs (Rajpurohit+, 2018)
J/ApJ/869/72 : IN-SYNC. VIII. YSOs in NGC1333, IC348 & Orion A (Yao+, 2018)
J/ApJ/879/105 : Eff. temperatures of low-mass stars (Lopez-Valdivia+, 2019)
J/AJ/162/110 : Gaia EDR3 census of Taurus-Auriga (Krolikowski+, 2021)
J/ApJ/911/138 : Low-mass PMS stars in Taurus-Auriga (Nofi+, 2021)
http://dataverse.harvard.edu/dataverse/igrins_ysos : IGRINS YSO survey
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 17 A17 -- 2MASS 2MASS identifier (JHHMMSSss+DDMMSSs)
19- 37 A19 -- Name Alternative object name
39- 42 F4.1 mag Ksmag [5.3/10.6] 2MASS (II/246) Ks magnitude
44- 48 A5 -- SpT Spectral type (Luhman+ 2017, J/AJ/153/46)
50- 52 A3 -- Class YSO class (84 Class II and 35 Class III)
54- 62 A9 -- r_Class References for YSO class (1)
64 A1 -- Bin Binary status ("Y"=48 occurrences;
"?"=16 occurrences)
66- 67 I2 -- r_Bin ? Reference for the binary status (1)
69- 70 I2 -- Nep [1/10] Number of epochs combined
72- 74 I3 -- SNR [64/931] K-band median signal-to-noise ratio
76 I1 -- Flag [0/3]? Quality flag (0=good) (2)
78- 81 I4 K Teff [3204/4606]? Effective temperature
83- 85 I3 K e_Teff [80/437]? Total (fit+systematic) error on the
effective temperature
87- 90 F4.2 [cm/s2] logg [3.2/4.7]? Surface gravity
92- 95 F4.2 [cm/s2] e_logg [0.14/0.7]? Total (fit+systematic) error on
the surface gravity
98 A1 --- l_B Upper limit flag on B
100- 103 F4.2 0.1T B [0.9/3.3]? Magnetic field strength
105- 108 F4.2 0.1T e_B [0.27/]? Total (fit+systematic) error on the
magnetic field strength
110- 113 F4.1 km/s vsini [4.6/44]? Projected rotational velocity
115- 117 F3.1 km/s e_vsini [1.7/10]? Total (fit+systematic) error on the
projected rotational velocity
119- 122 F4.2 -- rK [0.02/5.53]? K-band veiling (3)
124- 127 F4.2 -- e_rK [0.01/1.1]? Fit error on the K-band veiling
--------------------------------------------------------------------------------
Note (1): References as follows:
1 = Kenyon & Hartmann (1995ApJS..101..117K 1995ApJS..101..117K);
2 = Luhman et al. (2010ApJS..186..111L 2010ApJS..186..111L);
3 = Rebull et al. (2010ApJS..186..259R 2010ApJS..186..259R);
4 = Esplin et al. (2014ApJ...784..126E 2014ApJ...784..126E);
5 = Kraus et al. (2017ApJ...838..150K 2017ApJ...838..150K);
6 = Bouvier et al. (1992A&A...261..451B 1992A&A...261..451B);
7 = Correia et al. (2006A&A...459..909C 2006A&A...459..909C);
8 = Duchene (1999A&A...351..954D 1999A&A...351..954D);
9 = Dyck et al. (1982ApJ...255L.103D 1982ApJ...255L.103D);
10 = Ghez et al. (1993AJ....106.2005G 1993AJ....106.2005G);
11 = Haas et al. (1990A&A...230L...1H 1990A&A...230L...1H);
12 = Herbig & Bell (1988cels.book.....H 1988cels.book.....H);
13 = Ireland & Kraus (2008ApJ...678L..59I 2008ApJ...678L..59I);
14 = Konopacky et al. (2007ApJ...663..394K 2007ApJ...663..394K);
15 = Kraus et al. (2006ApJ...649..306K 2006ApJ...649..306K);
16 = Kraus et al. (2011ApJ...731....8K 2011ApJ...731....8K);
17 = Leinert et al. (1991A&A...250..407L 1991A&A...250..407L);
18 = Leinert et al. (1993A&A...278..129L 1993A&A...278..129L);
19 = Mathieu et al. (1991AJ....101.2184M 1991AJ....101.2184M);
20 = Mathieu et al. (1996AAS...188.6005M 1996AAS...188.6005M);
21 = Richichi et al. (1999A&A...350..491R 1999A&A...350..491R);
22 = Ruiz-Rodriguez et al. (2016MNRAS.463.3829R 2016MNRAS.463.3829R);
23 = Schaefer et al. (2014AJ....147..157S 2014AJ....147..157S);
24 = Simon et al. (1992ApJ...384..212S 1992ApJ...384..212S);
25 = Walter et al. (1988AJ.....96..297W 1988AJ.....96..297W);
26 = Weintraub (1989PhDT........11W 1989PhDT........11W).
Note (2): Quality flag as follows:
0 = good (80 occurrences)
1 = acceptable (24 occurrences)
2 = outside/edge of grid (6 occurrences)
3 = poor (9 occurrences)
Note (3): Note that the K-band veiling value (rK;
Basri & Batalha 1990ApJ...363..654B 1990ApJ...363..654B) determined with our MCMC analysis
are not strictly a veiling value, but a combination of the true
veiling with secondary systematic offsets between the model and target
continua. See Section 3.3.
--------------------------------------------------------------------------------
History:
From electronic version of the journal for Table 1.
Reduced spectra downloaded from:
http://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/F9N2E0
References:
Kidder et al. Paper II. 2021ApJ...922...27K 2021ApJ...922...27K
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 07-Feb-2023