J/ApJ/925/21      IRTF/iSHELL K-band sp. obs. of PMS stars      (Flores+, 2022)

The effects of starspots on spectroscopic mass estimates of low-mass young stars. Flores C., Connelley M.S., Reipurth B., Duchene G. <Astrophys. J., 925, 21 (2022)> =2022ApJ...925...21F 2022ApJ...925...21F
ADC_Keywords: YSOs; Spectra, infrared; Rotational velocities; Magnetic fields; Spectral types; Stars, masses; Optical; Effective temperatures; Stars, pre-main sequence Keywords: Starspots ; Stellar magnetic fields ; Pre-main sequence stars ; T Tauri stars ; High resolution spectroscopy Abstract: Magnetic fields and mass accretion processes create dark and bright spots on the surface of young stars. These spots manifest as surface thermal inhomogeneities, which alter the global temperature measured on the stars. To understand the effects and implications of these starspots, we conducted a large iSHELL high-resolution infrared spectroscopic survey of T Tauri stars in Taurus-Auriga and Ophiuchus star-forming regions. From the K-band spectra, we measured stellar temperatures and magnetic field strengths using a magnetic radiative transfer code. We compared our infrared-derived parameters against literature optical temperatures and found (a) a systematic temperature difference between optical and infrared observations, and (b) a positive correlation between the magnetic field strengths and the temperature differences. The discrepant temperature measurements imply significant differences in the inferred stellar masses from stellar evolutionary models. To discern which temperature better predicts the mass of the star, we compared our model-derived masses against dynamical masses measured from Atacama Large Millimeter/submillimeter Array and the Plateau de Bure Interferometer for a subsample of our sources. From this comparison we conclude that, in the range of stellar masses from 0.3 to 1.3M, neither infrared nor optical temperatures perfectly reproduce the stellar dynamical masses. But, on average, infrared temperatures produce more precise and accurate stellar masses than optical ones. Description: We observed 40 young stars between 2017 October 13 and 2020 October 23 using the high-resolution near-infrared echelle spectrograph iSHELL on the Infrared Telescope Facility (IRTF). The observations were performed in the K2 mode, thus from 2.09 to 2.38um, using the 0.75" slit to achieve a spectral resolution of R∼50000. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 99 40 Stellar parameters of young stars derived from K band table2.dat 70 40 Optical parameters from literature and derived masses -------------------------------------------------------------------------------- See also: J/AJ/130/1145 : YSO near-infrared properties (Doppmann+, 2005) J/AJ/130/1733 : Optical spectroscopy of ρ Oph stars (Wilking+, 2005) J/A+A/460/695 : Associations Containing Young stars (Torres+, 2006) J/other/A+ARV/17.251 : Stars observed with Doppler imaging (Strassmeier, 2009) J/ApJS/186/111 : Spitzer observations of Taurus members (Luhman+, 2010) J/AJ/142/140 : Opt. spectroscopy of ρ Oph stars. II. (Erickson+, 2011) J/ApJ/786/97 : Photospheric properties of T Tauri stars (Herczeg+, 2014) J/MNRAS/441/2361 : Stellar magnetism, age and rotation (Vidotto+, 2014) J/AJ/156/75 : Circumstellar disks in the Upper Sco assoc. (Esplin+, 2018) J/MNRAS/482/698 : Oph DIsc Survey Employing ALMA (ODISEA). I. (Cieza+, 2019) J/A+A/622/A72 : Intermediate-mass T Tau stars spectra (Villebrun+, 2019) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of the star 12- 15 I4 K Tkband [3004/4400] K band temperature 17- 19 I3 K E_Tkband [10/142] Upper statistical K-band temperature uncertainty (1) 21- 23 I3 K e_Tkband [7/169] Lower statistical K-band temperature uncertainty (1) 25- 28 F4.2 [cm/s2] logg [3.1/4.4] Surface gravity in log10 30- 33 F4.2 [cm/s2] E_logg [0.02/0.4] Upper statistical surface gravity uncertainty (1) 35- 38 F4.2 [cm/s2] e_logg [0.03/0.5] Lower statistical surface gravity uncertainty (1) 40- 43 F4.2 --- veiling [0.03/4.15] Infrared K band veiling 45- 48 F4.2 --- E_veiling [0.01/0.5] Upper statistical infrared K band veiling uncertainty (1) 50- 53 F4.2 --- e_veiling [0.01/0.7] Lower statistical infrared K band veiling uncertainty (1) 55- 58 F4.2 m/s Vmicro [0.14/3.64] Micro turbulence 60- 63 F4.2 m/s E_Vmicro [0.17/1.1] Upper statistical micro turbulence uncertainty (1) 65- 68 F4.2 m/s e_Vmicro [0.03/2.1] Lower statistical micro turbulence uncertainty (1) 70- 73 F4.2 0.1T Bfield [0.7/3.3] Magnetic field strength in deciTesla or kilogauss 75- 78 F4.2 0.1T E_Bfield [0.05/0.7] Upper statistical Magnetic field strength uncertainty (1) 80- 83 F4.2 0.1T e_Bfield [0.06/0.8] Lower statistical Magnetic field strength uncertainty (1) 85- 89 F5.2 m/s vsini [5.15/34.6] Projected rotational velocity 91- 94 F4.2 m/s E_vsini [0.07/2.7] Upper statistical projected rotational velocity uncertainty (1) 96- 99 F4.2 m/s e_vsini [0.19/2.1] Lower statistical projected rotational velocity uncertainty (1) -------------------------------------------------------------------------------- Note (1): The reported uncertainties correspond to 3σ deviations from the median value obtained from the MCMC distributions -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of the star (1) 12- 15 A4 --- SpT Adopted optical spectral type from literature 17- 20 I4 K Topt [3085/4710]? Optical temperature 22- 24 I3 K e_Topt [30/290]? Statistical Optical temperature uncertainty 26 I1 --- r_SpT [1/8]? Reference for the adopted spectral type (2) 28- 31 F4.2 Msun Mkband [0.3/1.5]? Stellar mass derived from K-band temperature 33- 36 F4.2 Msun E_Mkband [0.02/0.2]? Upper statistical K-band derived mass uncertainty 38- 41 F4.2 Msun e_Mkband [0.04/0.2]? Lower statistical K-band derived mass uncertainty 43- 46 F4.2 Msun Mopt [0.4/1.7]? Stellar mass derived from optical temperature 48 A1 --- l_Mopt [> ] Limit flag on the upper uncertainty 49- 52 F4.2 Msun E_Mopt [0.03/0.3]? Upper statistical Optical derived mass uncertainty 54- 58 F5.3 Msun e_Mopt [0.03/0.3]? Lower statistical Optical derived mass uncertainty 60- 64 F5.3 Msun Mdyn [0.1/1.27]? Dynamical mass 66- 70 F5.3 Msun e_Mdyn [0.01/0.3]? Statistical dynamical mass uncertainty -------------------------------------------------------------------------------- Note (1): As discussed in Manara+ (2019A&A...628A..95M 2019A&A...628A..95M), Herczeg & Hillenbrand (2014, J/ApJ/786/97) defined V710 Tau A as the southern companion and V710 Tau B as the Northern companion. Note (2): Optical spectral type reference as follows: 1 = Herczeg & Hillenbrand et al. (2014, J/ApJ/786/97); 2 = Luhman et al. (2010, J/ApJS/186/111); 3 = Wilking et al. (2005, J/AJ/130/1733); 4 = Erickson et al. (2011, J/AJ/142/140); 5 = White & Hillenbrand (2004ApJ...616..998W 2004ApJ...616..998W); 6 = Torres et al. (2006, J/A+A/460/695); 7 = Bouvier & Appenzeller (1992A&AS...92..481B 1992A&AS...92..481B); 8 = Hartigan & Kenyon (2003ApJ...583..334H 2003ApJ...583..334H). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 28-Aug-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line