J/ApJ/929/76    VANDAM survey of Orion protostars. VI. Disks    (Sheehan+, 2022)

The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey of Orion protostars. VI. Insights from radiative transfer modeling. Sheehan P.D., Tobin J.J., Looney L.W., Megeath S.T. <Astrophys. J., 929, 76 (2022)> =2022ApJ...929...76S 2022ApJ...929...76S
ADC_Keywords: YSOs; Millimetric/submm sources; Stars, masses; Stars, ages; Stars, diameters Keywords: Protostars ; Protoplanetary disks ; Star formation ; Planet formation Abstract: We present Markov Chain Monte Carlo radiative transfer modeling of a joint ALMA 345GHz and spectral energy distribution data set for a sample of 97 protostellar disks from the VLA and ALMA Nascent Disk and Multiplicity Survey of Orion Protostars. From this modeling, we derive disk and envelope properties for each protostar, allowing us to examine the bulk properties of a population of young protostars. We find that disks are small, with a median dust radius of 29.4-2.7+4.1au and a median dust mass of 5.8-2.7+4.6M. We find no statistically significant difference between most properties of Class 0, Class I, and flat-spectrum sources with the exception of envelope dust mass and inclination. The distinction between inclination is an indication that the Class 0/I/flat-spectrum system may be difficult to tie uniquely to the evolutionary state of protostars. When comparing with Class II disk dust masses in Taurus from similar radiative transfer modeling, we further find that the trend of disk dust mass decreasing from Class 0 to Class II disks is no longer present, though it remains unclear whether such a comparison is fair owing to differences in star-forming region and modeling techniques. Moreover, the disks we model are broadly gravitationally stable. Finally, we compare disk masses and radii with simulations of disk formation and find that magnetohydrodynamical effects may be important for reproducing the observed properties of disks. Description: The data we use for our modeling are drawn from the VANDAM Survey of Orion Protostars (Paper II; Tobin+ 2020, J/ApJ/890/130), which surveyed 328 protostars in the Orion Molecular Cloud complex. These observations include ALMA 345GHz continuum and spectral line observations at 0.1" spatial resolution, along with Very Large Array (VLA) 33GHz continuum observations at 0.06", for all protostars surveyed. For our final sample of 97 protostars, including 25 Class 0 sources, 44 Class I sources, and 28 flat-spectrum sources, we collect the ALMA 345GHz continuum observations for our modeling analysis. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 489 97 Best-fit radiative transfer model parameters -------------------------------------------------------------------------------- See also: J/ApJS/86/713 : IR spectroscopy of ices (Hudgins+, 1993) J/ApJ/540/236 : KH photometry of Orion Nebula Cluster (Hillenbrand+, 2000) J/ApJ/684/1240 : Prestellar cores in Perseus, Serpens & Oph (Enoch+, 2008) J/A+A/481/345 : SED evolution in massive YSOs (Molinari+, 2008) J/ApJS/181/321 : Properties of Spitzer c2d dark clouds (Evans+, 2009) J/ApJ/771/129 : Submillimetric Class II sources of Taurus (Andrews+, 2013) J/ApJ/767/36 : APEX observations of HOPS protostars (Stutz+, 2013) J/A+A/568/L5 : HH 212 CO, CS and 850um ALMA images (Codella+, 2014) J/A+A/563/L2 : NGC1333-IRAS2A CALYPSO IRAM-PdBI 1mm maps (Maury+, 2014) J/ApJS/220/11 : SEDs of Spitzer YSOs in the Gould Belt (Dunham+, 2015) J/ApJ/828/46 : ALMA survey of Lupus protopl. disks. I. (Ansdell+, 2016) J/ApJ/827/142 : ALMA obs. of GKM stars in Upper Sco (Barenfeld+, 2016) J/ApJS/224/5 : Herschel Orion Protostar Survey (HOPS): SEDs (Furlan+, 2016) J/A+A/592/A18 : Molecule and grain abundances (Marchand+, 2016) J/ApJ/831/125 : ALMA 887um obs. of ChaI star-forming region (Pascucci+, 2016) J/ApJ/818/73 : Study of protostars in Perseus molecular cloud (Tobin+, 2016) J/ApJ/845/44 : 340GHz SMA obs. of 50 nearby protopl. disks (Tripathi+, 2017) J/ApJ/869/L41 : DSHARP I. Sample, ALMA obs. log and overview (Andrews+, 2018) J/ApJ/859/21 : ALMA survey of Lupus protopl. disks. II. (Ansdell+, 2018) J/ApJ/869/L42 : DSHARP. II. Annular substructures data (Huang+, 2018) J/ApJS/238/19 : VANDAM IV. Free-free emissions (Tychoniec+, 2018) J/AJ/157/144 : Protoplanetary disk masses in Taurus (Ballering+, 2019) J/A+A/626/A11 : Corona Australis ALMA and X-Shooter data (Cazzoletti+, 2019) J/MNRAS/482/698 : Oph DIsc Survey Employing ALMA (ODISEA). I. (Cieza+, 2019) J/ApJ/875/L9 : ODISEA: Disk dust mass distributions (Williams+, 2019) J/ApJ/905/119 : HOPS: Herschel/PACS 70 and 160um obs. (Fischer+, 2020) J/ApJ/890/130 : VANDAM survey of Orion protostars. II. (Tobin+, 2020) J/A+A/640/A27 : Protoplanetary disk masses in NGC 2024 (van Terwisga+, 2020) J/ApJ/913/123 : ALMA survey of protopl. disks in Lynds 1641 (Grant+, 2021) J/A+A/645/A55 : Catalogue of cold cores in Perseus (Pezzuto+, 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Source name 10- 16 F7.3 Lsun Lum [0.1/150] Protostar luminosity 18- 24 F7.3 Lsun E_Lum [0.04/103] Upper uncertainty on Lum 26- 31 F6.3 Lsun e_Lum [0.008/35] Lower uncertainty on Lum 33- 39 F7.3 Mgeo Mdust [0.1/175] Dust mass of the disk 41- 47 F7.3 Mgeo E_Mdust [0.2/363] Upper uncertainty on Mdust 49- 55 F7.3 Mgeo e_Mdust [0.08/140] Lower uncertainty on Mdust 57- 65 F9.7 Msun Mg+d [3.7e-5/0.06] Gas + dust mass of the disk 67- 75 F9.7 Msun E_Mg+d [7e-5/0.2] Upper uncertainty on Mg+d 77- 85 F9.7 Msun e_Mg+d [2.4e-5/0.05] Lower uncertainty on Mg+d 87- 92 F6.2 AU Rd [3.7/334] Critical radius of the disk 94- 99 F6.2 AU E_Rd [0.3/816] Upper uncertainty on Rd 101- 105 F5.2 AU e_Rd [0.5/93] Lower uncertainty on Rd 107- 112 F6.3 AU Rin [0.1/24] Inner radius of the disk 114- 118 F5.3 AU E_Rin [0.07/6] Upper uncertainty on Rin 120- 124 F5.3 AU e_Rin [0.005/5] Lower uncertainty on Rin 126- 130 F5.2 --- gamma [-0.5/1.9] Surface density power law exponent 132- 135 F4.2 --- E_gamma [0.01/2] Upper uncertainty on gamma 137- 140 F4.2 --- e_gamma [0/2.1] Lower uncertainty on gamma 142- 146 F5.3 AU h0 [0.01/0.5] Scale height of the disk at 1 au 148- 152 F5.3 AU E_h0 [0.007/0.3] Upper uncertainty on h0 154- 158 F5.3 AU e_h0 [0.002/0.3] Lower uncertainty on h0 160- 164 F5.3 --- psi [0.5/1.5] Disk flaring power law 166- 170 F5.3 --- E_psi [0.02/0.6] Upper uncertainty on psi 172- 176 F5.3 --- e_psi [0.02/1] Lower uncertainty on psi 178- 184 F7.3 mJy F230 [0.2/563] Disk-only flux at 230 GHz 186- 193 F8.3 mJy F345 [1/1894] Disk-only flux at 345 GHz 195- 202 F8.3 --- Qmin [2.6/2779] Minimum Toomre-Q value in the disk 204- 211 F8.3 --- E_Qmin [7/8765] Upper uncertainty on Qmin 213- 220 F8.3 --- e_Qmin [1.8/1860] Lower uncertainty on Qmin 222- 229 F8.3 Mgeo Menvd [0.003/1833] Dust mass of the envelope 231- 238 F8.3 Mgeo E_Menvd [0.2/3569] Upper uncertainty on Menvd 240- 247 F8.3 Mgeo e_Menvd [0.003/1015] Lower uncertainty on Menvd 249- 257 F9.7 Msun Menv [1e-6/0.6] Gas + dust mass of the envelope 259- 267 F9.7 Msun E_Menv [7.2e-5/1.1] Upper uncertainty on Menv 269- 277 F9.7 Msun e_Menv [1e-6/0.4] Lower uncertainty on Menv 279- 285 F7.1 AU Renv [114/35105] Radius of the envelope 287- 293 F7.1 AU E_Renv [22/28789] Upper uncertainty on Renv 295- 301 F7.1 AU e_Renv [10/23120] Lower uncertainty on Renv 303- 307 F5.3 --- ksi [0.56/1.5] Outflow cavity shape parameter 309- 313 F5.3 --- E_ksi [0.01/0.9] Upper uncertainty on ksi 315- 319 F5.3 --- e_ksi [0.007/0.8] Lower uncertainty on ksi 321- 325 F5.3 --- fcav [0.004/1] Dust depletion factor in the envelope 327- 331 F5.3 --- E_fcav [0.01/1] Upper uncertainty on fcav 333- 337 F5.3 --- e_fcav [0.004/0.9] Lower uncertainty on fcav 339- 345 F7.1 um amax [1.3/43972] Maximum dust grain size in the disk 347- 353 F7.1 um E_amax [5.6/85650] Upper uncertainty on amax 355- 361 F7.1 um e_amax [0.2/43971] Lower uncertainty on amax 363- 366 F4.2 --- p [2.5/4.5] Grain size distribution power law exponent 368- 371 F4.2 --- E_p [0.05/2] Upper uncertainty on p 373- 376 F4.2 --- e_p [0.05/1.8] Lower uncertainty on p 378- 381 F4.1 deg i [2/92] Inclination of the disk 383- 386 F4.1 deg E_i [0.4/84] Upper uncertainty on i 388- 391 F4.1 deg e_i [0.4/62] Lower uncertainty on i 393- 398 F6.2 deg PA [4.6/196] Position angle of the disk 400- 405 F6.2 deg E_PA [0.3/153] Upper uncertainty on PA 407- 412 F6.2 deg e_PA [0.32/173] Lower uncertainty on PA 414- 418 F5.3 cm2/g k230 [1.3/6.6] Dust opacity at 230 GHz 420- 425 F6.3 cm2/g k345 [1.6/12.3] Dust opacity at 345 GHz 427- 431 F5.3 --- beta [0.5/2.7] Dust opacity power law index between 230 and 345GHz 433- 437 F5.3 Msun Mtot [0.001/0.007] Total mass of system (Mtot=M*+Mdisk+Menv) 439- 443 F5.3 Msun E_Mtot [0.01/0.03] Upper uncertainty on Mtot 445- 449 F5.3 Msun e_Mtot [0/0.003] Lower uncertainty on Mtot 451- 455 F5.3 --- Env/Tot [0/0.9] Ratio of Menv/Mtot 457- 461 F5.3 --- E_Env/Tot [0.002/0.8] Upper uncertainty on Env/Tot 463- 467 F5.3 --- e_Env/Tot [0/0.8] Lower uncertainty on Env/Tot 469- 475 I7 yr Age [6594/1395434] Age of the system estimated from Menv and Lum 477- 482 I6 yr E_Age [7655/731430] Upper uncertainty on Age 484- 489 I6 yr e_Age [5823/776633] Lower uncertainty on Age -------------------------------------------------------------------------------- History: From electronic version of the journal References: Tobin et al. Paper I. 2019ApJ...886....6T 2019ApJ...886....6T Tobin et al. Paper II. 2020ApJ...890..130T 2020ApJ...890..130T Cat. J/ApJ/890/130 Sheehan et al. Paper III. 2020ApJ...902..141S 2020ApJ...902..141S Tobin et al. Paper IV. 2020ApJ...905..162T 2020ApJ...905..162T Tobin et al. Paper V. 2022ApJ...925...39T 2022ApJ...925...39T Cat. J/ApJ/925/39 Sheehan et al. Paper VI. 2022ApJ...929...76S 2022ApJ...929...76S This catalog
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 06-Mar-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line