J/ApJ/929/76 VANDAM survey of Orion protostars. VI. Disks (Sheehan+, 2022)
The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey of Orion protostars.
VI. Insights from radiative transfer modeling.
Sheehan P.D., Tobin J.J., Looney L.W., Megeath S.T.
<Astrophys. J., 929, 76 (2022)>
=2022ApJ...929...76S 2022ApJ...929...76S
ADC_Keywords: YSOs; Millimetric/submm sources; Stars, masses; Stars, ages;
Stars, diameters
Keywords: Protostars ; Protoplanetary disks ; Star formation ; Planet formation
Abstract:
We present Markov Chain Monte Carlo radiative transfer modeling of a
joint ALMA 345GHz and spectral energy distribution data set for a
sample of 97 protostellar disks from the VLA and ALMA Nascent Disk and
Multiplicity Survey of Orion Protostars. From this modeling, we derive
disk and envelope properties for each protostar, allowing us to
examine the bulk properties of a population of young protostars. We
find that disks are small, with a median dust radius of
29.4-2.7+4.1au and a median dust mass of
5.8-2.7+4.6M⊕. We find no statistically significant
difference between most properties of Class 0, Class I, and
flat-spectrum sources with the exception of envelope dust mass and
inclination. The distinction between inclination is an indication that
the Class 0/I/flat-spectrum system may be difficult to tie uniquely to
the evolutionary state of protostars. When comparing with Class II
disk dust masses in Taurus from similar radiative transfer modeling,
we further find that the trend of disk dust mass decreasing from Class
0 to Class II disks is no longer present, though it remains unclear
whether such a comparison is fair owing to differences in star-forming
region and modeling techniques. Moreover, the disks we model are
broadly gravitationally stable. Finally, we compare disk masses and
radii with simulations of disk formation and find that
magnetohydrodynamical effects may be important for reproducing the
observed properties of disks.
Description:
The data we use for our modeling are drawn from the VANDAM Survey of
Orion Protostars (Paper II; Tobin+ 2020, J/ApJ/890/130), which
surveyed 328 protostars in the Orion Molecular Cloud complex. These
observations include ALMA 345GHz continuum and spectral line
observations at 0.1" spatial resolution, along with Very Large Array
(VLA) 33GHz continuum observations at 0.06", for all protostars
surveyed.
For our final sample of 97 protostars, including 25 Class 0 sources,
44 Class I sources, and 28 flat-spectrum sources, we collect the ALMA
345GHz continuum observations for our modeling analysis.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 489 97 Best-fit radiative transfer model parameters
--------------------------------------------------------------------------------
See also:
J/ApJS/86/713 : IR spectroscopy of ices (Hudgins+, 1993)
J/ApJ/540/236 : KH photometry of Orion Nebula Cluster (Hillenbrand+, 2000)
J/ApJ/684/1240 : Prestellar cores in Perseus, Serpens & Oph (Enoch+, 2008)
J/A+A/481/345 : SED evolution in massive YSOs (Molinari+, 2008)
J/ApJS/181/321 : Properties of Spitzer c2d dark clouds (Evans+, 2009)
J/ApJ/771/129 : Submillimetric Class II sources of Taurus (Andrews+, 2013)
J/ApJ/767/36 : APEX observations of HOPS protostars (Stutz+, 2013)
J/A+A/568/L5 : HH 212 CO, CS and 850um ALMA images (Codella+, 2014)
J/A+A/563/L2 : NGC1333-IRAS2A CALYPSO IRAM-PdBI 1mm maps (Maury+, 2014)
J/ApJS/220/11 : SEDs of Spitzer YSOs in the Gould Belt (Dunham+, 2015)
J/ApJ/828/46 : ALMA survey of Lupus protopl. disks. I. (Ansdell+, 2016)
J/ApJ/827/142 : ALMA obs. of GKM stars in Upper Sco (Barenfeld+, 2016)
J/ApJS/224/5 : Herschel Orion Protostar Survey (HOPS): SEDs (Furlan+, 2016)
J/A+A/592/A18 : Molecule and grain abundances (Marchand+, 2016)
J/ApJ/831/125 : ALMA 887um obs. of ChaI star-forming region (Pascucci+, 2016)
J/ApJ/818/73 : Study of protostars in Perseus molecular cloud (Tobin+, 2016)
J/ApJ/845/44 : 340GHz SMA obs. of 50 nearby protopl. disks (Tripathi+, 2017)
J/ApJ/869/L41 : DSHARP I. Sample, ALMA obs. log and overview (Andrews+, 2018)
J/ApJ/859/21 : ALMA survey of Lupus protopl. disks. II. (Ansdell+, 2018)
J/ApJ/869/L42 : DSHARP. II. Annular substructures data (Huang+, 2018)
J/ApJS/238/19 : VANDAM IV. Free-free emissions (Tychoniec+, 2018)
J/AJ/157/144 : Protoplanetary disk masses in Taurus (Ballering+, 2019)
J/A+A/626/A11 : Corona Australis ALMA and X-Shooter data (Cazzoletti+, 2019)
J/MNRAS/482/698 : Oph DIsc Survey Employing ALMA (ODISEA). I. (Cieza+, 2019)
J/ApJ/875/L9 : ODISEA: Disk dust mass distributions (Williams+, 2019)
J/ApJ/905/119 : HOPS: Herschel/PACS 70 and 160um obs. (Fischer+, 2020)
J/ApJ/890/130 : VANDAM survey of Orion protostars. II. (Tobin+, 2020)
J/A+A/640/A27 : Protoplanetary disk masses in NGC 2024 (van Terwisga+, 2020)
J/ApJ/913/123 : ALMA survey of protopl. disks in Lynds 1641 (Grant+, 2021)
J/A+A/645/A55 : Catalogue of cold cores in Perseus (Pezzuto+, 2021)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- Name Source name
10- 16 F7.3 Lsun Lum [0.1/150] Protostar luminosity
18- 24 F7.3 Lsun E_Lum [0.04/103] Upper uncertainty on Lum
26- 31 F6.3 Lsun e_Lum [0.008/35] Lower uncertainty on Lum
33- 39 F7.3 Mgeo Mdust [0.1/175] Dust mass of the disk
41- 47 F7.3 Mgeo E_Mdust [0.2/363] Upper uncertainty on Mdust
49- 55 F7.3 Mgeo e_Mdust [0.08/140] Lower uncertainty on Mdust
57- 65 F9.7 Msun Mg+d [3.7e-5/0.06] Gas + dust mass of the disk
67- 75 F9.7 Msun E_Mg+d [7e-5/0.2] Upper uncertainty on Mg+d
77- 85 F9.7 Msun e_Mg+d [2.4e-5/0.05] Lower uncertainty on Mg+d
87- 92 F6.2 AU Rd [3.7/334] Critical radius of the disk
94- 99 F6.2 AU E_Rd [0.3/816] Upper uncertainty on Rd
101- 105 F5.2 AU e_Rd [0.5/93] Lower uncertainty on Rd
107- 112 F6.3 AU Rin [0.1/24] Inner radius of the disk
114- 118 F5.3 AU E_Rin [0.07/6] Upper uncertainty on Rin
120- 124 F5.3 AU e_Rin [0.005/5] Lower uncertainty on Rin
126- 130 F5.2 --- gamma [-0.5/1.9] Surface density power law exponent
132- 135 F4.2 --- E_gamma [0.01/2] Upper uncertainty on gamma
137- 140 F4.2 --- e_gamma [0/2.1] Lower uncertainty on gamma
142- 146 F5.3 AU h0 [0.01/0.5] Scale height of the disk at 1 au
148- 152 F5.3 AU E_h0 [0.007/0.3] Upper uncertainty on h0
154- 158 F5.3 AU e_h0 [0.002/0.3] Lower uncertainty on h0
160- 164 F5.3 --- psi [0.5/1.5] Disk flaring power law
166- 170 F5.3 --- E_psi [0.02/0.6] Upper uncertainty on psi
172- 176 F5.3 --- e_psi [0.02/1] Lower uncertainty on psi
178- 184 F7.3 mJy F230 [0.2/563] Disk-only flux at 230 GHz
186- 193 F8.3 mJy F345 [1/1894] Disk-only flux at 345 GHz
195- 202 F8.3 --- Qmin [2.6/2779] Minimum Toomre-Q value in the disk
204- 211 F8.3 --- E_Qmin [7/8765] Upper uncertainty on Qmin
213- 220 F8.3 --- e_Qmin [1.8/1860] Lower uncertainty on Qmin
222- 229 F8.3 Mgeo Menvd [0.003/1833] Dust mass of the envelope
231- 238 F8.3 Mgeo E_Menvd [0.2/3569] Upper uncertainty on Menvd
240- 247 F8.3 Mgeo e_Menvd [0.003/1015] Lower uncertainty on Menvd
249- 257 F9.7 Msun Menv [1e-6/0.6] Gas + dust mass of the envelope
259- 267 F9.7 Msun E_Menv [7.2e-5/1.1] Upper uncertainty on Menv
269- 277 F9.7 Msun e_Menv [1e-6/0.4] Lower uncertainty on Menv
279- 285 F7.1 AU Renv [114/35105] Radius of the envelope
287- 293 F7.1 AU E_Renv [22/28789] Upper uncertainty on Renv
295- 301 F7.1 AU e_Renv [10/23120] Lower uncertainty on Renv
303- 307 F5.3 --- ksi [0.56/1.5] Outflow cavity shape parameter
309- 313 F5.3 --- E_ksi [0.01/0.9] Upper uncertainty on ksi
315- 319 F5.3 --- e_ksi [0.007/0.8] Lower uncertainty on ksi
321- 325 F5.3 --- fcav [0.004/1] Dust depletion factor in the envelope
327- 331 F5.3 --- E_fcav [0.01/1] Upper uncertainty on fcav
333- 337 F5.3 --- e_fcav [0.004/0.9] Lower uncertainty on fcav
339- 345 F7.1 um amax [1.3/43972] Maximum dust grain size in the disk
347- 353 F7.1 um E_amax [5.6/85650] Upper uncertainty on amax
355- 361 F7.1 um e_amax [0.2/43971] Lower uncertainty on amax
363- 366 F4.2 --- p [2.5/4.5] Grain size distribution power law
exponent
368- 371 F4.2 --- E_p [0.05/2] Upper uncertainty on p
373- 376 F4.2 --- e_p [0.05/1.8] Lower uncertainty on p
378- 381 F4.1 deg i [2/92] Inclination of the disk
383- 386 F4.1 deg E_i [0.4/84] Upper uncertainty on i
388- 391 F4.1 deg e_i [0.4/62] Lower uncertainty on i
393- 398 F6.2 deg PA [4.6/196] Position angle of the disk
400- 405 F6.2 deg E_PA [0.3/153] Upper uncertainty on PA
407- 412 F6.2 deg e_PA [0.32/173] Lower uncertainty on PA
414- 418 F5.3 cm2/g k230 [1.3/6.6] Dust opacity at 230 GHz
420- 425 F6.3 cm2/g k345 [1.6/12.3] Dust opacity at 345 GHz
427- 431 F5.3 --- beta [0.5/2.7] Dust opacity power law index between
230 and 345GHz
433- 437 F5.3 Msun Mtot [0.001/0.007] Total mass of system
(Mtot=M*+Mdisk+Menv)
439- 443 F5.3 Msun E_Mtot [0.01/0.03] Upper uncertainty on Mtot
445- 449 F5.3 Msun e_Mtot [0/0.003] Lower uncertainty on Mtot
451- 455 F5.3 --- Env/Tot [0/0.9] Ratio of Menv/Mtot
457- 461 F5.3 --- E_Env/Tot [0.002/0.8] Upper uncertainty on Env/Tot
463- 467 F5.3 --- e_Env/Tot [0/0.8] Lower uncertainty on Env/Tot
469- 475 I7 yr Age [6594/1395434] Age of the system estimated
from Menv and Lum
477- 482 I6 yr E_Age [7655/731430] Upper uncertainty on Age
484- 489 I6 yr e_Age [5823/776633] Lower uncertainty on Age
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Tobin et al. Paper I. 2019ApJ...886....6T 2019ApJ...886....6T
Tobin et al. Paper II. 2020ApJ...890..130T 2020ApJ...890..130T Cat. J/ApJ/890/130
Sheehan et al. Paper III. 2020ApJ...902..141S 2020ApJ...902..141S
Tobin et al. Paper IV. 2020ApJ...905..162T 2020ApJ...905..162T
Tobin et al. Paper V. 2022ApJ...925...39T 2022ApJ...925...39T Cat. J/ApJ/925/39
Sheehan et al. Paper VI. 2022ApJ...929...76S 2022ApJ...929...76S This catalog
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 06-Mar-2024