J/ApJ/930/7 Rot. distributions from TESS-APOGEE-Kepler-Gaia (Avallone+, 2022)
Rotation distributions around the Kraft break with TESS and Kepler: the
influences of age, metallicity, and binarity.
Avallone E.A., Tayar J.N., van Saders J.L., Berger T.A., Claytor Z.R.,
Beaton R.L., Teske J., Godoy-Rivera D., Pan K.
<Astrophys. J., 930, 7 (2022)>
=2022ApJ...930....7A 2022ApJ...930....7A
ADC_Keywords: Rotational velocities; Abundances; Stars, diameters;
Stars, masses; Photometry; Optical; Binaries, spectroscopic;
Infrared sources
Keywords: Low mass stars ; Stellar rotation ; Binary stars ;
Spectroscopic binary stars ; Astrometric binary stars ;
Wide binary stars ; Close binary stars ; Stellar evolution ;
Stellar evolutionary models
Abstract:
Stellar rotation is a complex function of mass, metallicity, and age
and can be altered by binarity. To understand the importance of these
parameters in main-sequence stars, we have assembled a sample of
observations that spans a range of these parameters using a
combination of observations from The Transiting Exoplanet Survey
Satellite (TESS) and the Kepler Space Telescope. We find that while we
can measure rotation periods and identify other classes of stellar
variability (e.g., pulsations) from TESS light curves, instrument
systematics prevent the detection of rotation signals longer than the
TESS orbital period of 13.7 days. Due to this detection limit, we also
use rotation periods constrained using rotational velocities measured
by the APOGEE spectroscopic survey and radii estimated using the Gaia
mission for both TESS and Kepler stars. From these rotation periods,
we (1) find we can track rotational evolution along discrete mass
tracks as a function of stellar age, (2) find we are unable to recover
trends between rotation and metallicity that were observed by previous
studies, and (3) note that our sample reveals that wide binary
companions do not affect rotation, while close binary companions cause
stars to exhibit more rapid rotation than single stars.
Description:
We use Cycle 1 data from the Transiting Exoplanet Survey Satellite
(TESS) southern continuous viewing zone (SCVZ) and spectroscopic
parameters from an APOGEE External Program through Carnegie
Observatories.
APOGEE data are collected with the 2.5m Sloan Digital Sky Survey
(SDSS) telescope at Apache Point Observatory and with the 2.5m du Pont
telescope at Las Campanas Observatory using near-twin H-band
spectrographs as part of the fourth campaign of SDSS (SDSS-IV).
APOGEE DR16 plus includes observations up to 2020 March (MJD=58932),
and APOGEE DR16 (III/284) includes observations up to August 2018
(MJD=58358).
We augment our TESS-APOGEE SCVZ sample with stars observed by APOGEE
and the Kepler Space Telescope.
We finally use stellar parallaxes from Gaia data release 2 (I/345),
K-band magnitudes from 2MASS (II/246), and Teff and [Fe/H] from APOGEE
to improve our estimates of the radii of stars in our final sample.
See Section 2.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 137 4216 Properties of stars with recovered rotation periods,
potential binaries, pulsating stars, and stars with
no detected variability in our TESS and Kepker
samples
table2.dat 101 169 Rotation periods for our TESS sample
--------------------------------------------------------------------------------
See also:
II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009)
I/345 : Gaia DR2 (Gaia Collaboration, 2018)
IV/38 : TESS Input Catalog - v8.0 (TIC-8) (Stassun+, 2019)
III/284 : APOGEE-2 data from DR16 (Johnsson+, 2020)
V/154 : Sloan Digital Sky Surveys (SDSS), Release 16 (DR16) (Ahumada+, 2020)
IV/39 : TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021)
I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022)
J/ApJ/687/1264 : Age estimation for solar-type dwarfs (Mamajek+, 2008)
J/ApJ/695/679 : Stellar rotation in M35 (Meibom+, 2009)
J/ApJ/733/L9 : Stellar rotation for 71 NGC 6811 members (Meibom+, 2011)
J/A+A/537/A146 : Stellar models with rot. 0.8<M<120, Z=0.014 (Ekstrom+, 2012)
J/MNRAS/432/1203 : Rotation periods of M-dwarf stars (McQuillan+, 2013)
J/ApJ/775/L11 : Stellar rotation periods for KOIs (McQuillan+, 2013)
J/A+A/557/L10 : Rotation periods of 12000 Kepler stars (Nielsen+, 2013)
J/A+A/560/A4 : Rotation periods of active Kepler stars (Reinhold+, 2013)
J/ApJ/776/67 : Rotational tracks (van Saders+, 2013)
J/ApJ/780/159 : Rot-mass-age relationship of old stars (Epstein+, 2014)
J/A+A/572/A34 : Pulsating solar-like stars in Kepler (Garcia+, 2014)
J/ApJS/211/24 : Rotation periods of Kepler MS stars (McQuillan+, 2014)
J/A+A/583/A65 : Active Kepler stars differential rotation (Reinhold+, 2015)
J/ApJS/221/24 : SDSS-III APOGEE H-band spectral line lists (Shetrone+, 2015)
J/ApJ/807/82 : Rotational velocities of APOKASC red giants (Tayar+, 2015)
J/AJ/151/144 : ASPCAP weights for APOGEE chemical elements (Garcia+, 2016)
J/A+A/605/A111 : Surface rotation of Kepler red giant stars (Ceillier+, 2017)
J/ApJ/842/83 : Praesepe members rot. periods from K2 LCs (Douglas+, 2017)
J/ApJ/835/75 : Common proper motion stars in the Kepler field (Janes, 2017)
J/AJ/154/250 : Kepler EB classifications & rotation periods (Lurie+, 2017)
J/ApJ/839/92 : Praesepe members with K2 light curve data (Rebull+, 2017)
J/ApJ/866/99 : Radii of KIC stars & planets with Gaia DR2 (Berger+, 2018)
J/ApJ/860/43 : BANYAN. XII. New members from Gaia-Tycho data (Gagne+, 2018)
J/MNRAS/490/4040 : δ Scuti & γ Dor stars in TESS (Antoci+, 2019)
J/ApJ/879/49 : Rot. periods for Gaia members of NGC 6811 (Curtis+, 2019)
J/MNRAS/485/2380 : Gaia-derived luminosities of Kepler stars (Murphy+, 2019)
J/ApJ/872/L9 : TESS obs. of massive O and B stars (Pedersen+, 2019)
J/ApJS/244/21 : Surface rot. & activity of Kepler stars. I. (Santos+, 2019)
J/ApJ/871/174 : Kepler rapid rotators and Ks-band excesses (Simonian+, 2019)
J/MNRAS/499/3481 : Metallicity and rotation in the Kepler field (Amard+, 2020)
J/AJ/159/280 : Gaia-Kepler stellar properties cat. I. KIC (Berger+, 2020)
J/A+A/640/A36 : OB stars TESS phot. & high-resolution sp. (Bowman+, 2020)
J/ApJ/888/43 : APOGEE-Kepler Cool Dwarf star ages (Claytor+, 2020)
J/ApJ/904/140 : R147 members & rot. data for 5 other cl. (Curtis+, 2020)
J/A+A/641/A51 : NGC 2516 membership list (Fritzewski+, 2020)
J/ApJS/250/20 : Rot. periods in TESS objects of interest (Canto+, 2020)
J/ApJ/898/76 : Rot. vel. of APOGEE stars in Kepler field (Simonian+, 2020)
J/ApJS/257/46 : Membership and rot. data for clusters (Godoy-Rivera+, 2021)
J/other/NatAs/5.707 : Dwarf stars asteroseismic rotation rates (Hall+, 2021)
J/AJ/161/189 : Gyro-kinematic ages for ∼30000 Kepler stars (Lu+, 2021)
J/A+A/649/A147 : Spectroscopic parameters for 313 M dwarfs (Sarmento+, 2021)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- Seq [0/4215] Internal index number
6- 11 A6 --- Mission Mission identifier (TESS: 2115 sources or
Kepler: 2101 sources)
13- 21 I9 --- ID [1025494/453102522] TIC or KIC identifier
23- 28 F6.1 K Teff [5600/7990] Effective temperature
30- 34 F5.1 K e_Teff [107/299] Uncertainty in Teff
36- 39 F4.2 [cm/s2] logg [3.1/5] Log surface gravity
41- 44 F4.2 [cm/s2] e_logg [0.06/0.2] Uncertainty in logg
46- 50 F5.2 km/s vsini [1.5/87.8]? Projected rotational velocity
52- 59 F8.2 [Sun] [Fe/H] [-1.6/0.5]?=-9999.99 Metallicity
61- 67 F7.2 [Sun] e_[Fe/H] [0.01/0.1]?=-999.99 Uncertainty in [Fe/H]
69- 76 F8.2 [Sun] [a/Fe] [-0.55/0.52]?=-9999.99 Log α/Fe
abundance ratio
78- 84 F7.2 [Sun] e_[a/Fe] [0/0.06]?=-999.99 Uncertainty in [a/Fe]
86- 89 F4.2 Rsun Rad [0/6.01]? Radius (1)
91- 94 F4.2 Rsun E_Rad [0/1.4]? Upper uncertainty in Rad
96- 99 F4.2 Rsun e_Rad [0/1]? Lower uncertainty in Rad
101- 104 F4.2 Msun Mass [0.69/2.6]? Mass (1)
106- 109 F4.2 Msun E_Mass [0/0.4]? Upper uncertainty in Mass
111- 114 F4.2 Msun e_Mass [0/0.4]? Lower uncertainty in Mass
116- 137 A22 --- Class Classification flag (2)
--------------------------------------------------------------------------------
Note (1): Estimated using isoclassify (Berger+ 2020, J/AJ/159/280).
Note (2): Classification flag as follows:
McQuillan Nondetection = McQuillan+ (2014, J/ApJS/211/24) nondetections
(1080 occurrences)
Pulsator = See Section 3.1 (27 occurrences)
RUWE Binary = Gaia RUWE>1.2, potential binary; see Section 3.2
(803 occurrences)
Rotator = 819 occurrences
Spectroscopic Binary = See Section 3.2 (56 occurrences)
Suspect Detection = stars with inconsistent Prot and Prot/sini;
see Section 3.3 (1431 occurrences)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq [0/168] Internal index number
5- 8 A4 --- Mission Mission identifier (always "TESS")
10- 18 I9 --- ID [25080230/391903064] TIC identifier
20- 39 A20 --- Bin Binary flag ("Single Star": 166 sources vs
"Spectroscopic Binary": 3 occurrences)
41- 45 F5.2 d PLS [0.4/12.2] Period from Lomb-Scargle periodogram
47- 50 F4.2 d e_PLS [0/1.3] Uncertainty in PLS
52- 56 F5.2 d PWave [0.8/11.7] Period from Wavelet analysis
58- 61 F4.2 d e_PWave [0.09/6.3] Uncertainty in Pwave
63- 67 F5.2 d PAcf [0.8/19.5] Period from autocorrelation
function analysis
69- 72 F4.2 d e_PAcf [0.09/7.6] Uncertainty in Pacf
74- 78 F5.2 d PRot [0.9/10.5] Mean photometric rotational
period (1)
80- 83 F4.2 d e_PRot [0.1/0.8] Uncertainty in PRot
85- 89 F5.2 d PRotc [1/44.2]? Rotational period divided by sini (1)
91- 95 F5.2 d E_PRotc [0.06/71]? Upper uncertainty in PRotc
97-101 F5.2 d e_PRotc [0.06/27.1]? Lower uncertainty in PRotc
--------------------------------------------------------------------------------
Note (1): Derived from APOGEE spectra and Gaia radii.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 12-Mar-2024