J/ApJ/940/12 HeIλ10830 in red giant stars with HET/HPF (Sneden+, 2022)
The active chromospheres of lithium-rich red giant stars.
Sneden C., Afsar M., Bozkurt Z., Adamow M., Mallick A., Reddy B.E.,
Janowiecki S., Mahadevan S., Bowler B.P., Hawkins K., Lind K.,
Dupree A.K., Ninan J.P., Nagarajan N., Topcu G.B., Froning C.S.,
Bender C.F., Terrien R., Ramsey L.W., Mace G.N.
<Astrophys. J., 940, 12 (2022)>
=2022ApJ...940...12S 2022ApJ...940...12S
ADC_Keywords: Spectra, infrared; Stars, giant; Equivalent widths; Abundances
Keywords: Stellar spectral lines ; Stellar chromospheres ;
Stellar photospheres ; Stellar abundances ; Red giant stars
Abstract:
We have gathered near-infrared zyJ-band high-resolution spectra of
nearly 300 field red giant stars with known lithium abundances in
order to survey their HeIλ10830 absorption strengths. This
transition is an indicator of chromospheric activity and/or mass loss
in red giants. The majority of stars in our sample reside in the red
clump or red horizontal branch based on their V-J, MV
color-magnitude diagram, and Gaia Teff and log(g) values. Most of our
target stars are Li-poor in the sense of having normally low Li
abundances, defined here as log ε(Li)<1.25. Over 90% of these
Li-poor stars have weak λ10830 features. However, more than
half of the 83 Li-rich stars (logε(Li)>1.25) have strong
λ10830 absorptions. These large λ10830 lines signal
excess chromospheric activity in Li-rich stars; there is almost no
indication of significant mass loss. The Li-rich giants may also have
a higher binary fraction than Li-poor stars, based on their
astrometric data. It appears likely that both residence on the
horizontal branch and present or past binary interaction play roles in
the significant Li-He connection established in this survey.
Description:
We gathered the Hobby-Eberly Telescope (HET)/Habitable-zone Planet
Finder (HPF) high-resolution zyJ (8100-12750Å) spectra of the
program stars for about a year beginning in 2021 April. HPF was
configured for our program to deliver a spectral resolving power of
R=λ/Δλ∼55000.
There are 278 program stars entered in Table 1. Of this total,
76 stars are Li-rich according to the tentative definition discussed
in Section 2, 187 stars are Li-poor, and 15 stars have no Li abundance.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 78 278 Program star data
--------------------------------------------------------------------------------
See also:
I/259 : The Tycho-2 Catalogue (Hog+ 2000)
J/A+A/395/97 : RV and vsini of Ib supergiant stars (de Medeiros+, 2002)
J/A+A/492/277 : Analysis of Collinder 69 stars with VOSA (Bayo+, 2008)
J/AJ/135/209 : Rot. & radial velocities 761 HIP giants (Massarotti+, 2008)
J/A+A/504/829 : Sp. survey of youngest field stars (Guillout+, 2009)
J/AJ/140/1911 : Astrometric Grid Giant Star Survey. III. (Bizyaev+, 2010)
J/ApJ/757/109 : Rot. velocities + Li abundance in K giants (Carlberg+, 2012)
J/A+A/547/A91 : Spectroscopic analysis of 348 red giants (Zielinski+, 2012)
J/ApJ/764/78 : Oxygen abundances in nearby FGK stars (Ramirez+, 2013)
J/A+A/569/A55 : Abundances and vsini for 348 red giants (Adamow+, 2014)
J/AJ/149/15 : Spectroscopy of NGC 7789 (Overbeek+, 2015)
J/AJ/150/123 : Catalog of 316 K giant candidates (Rebull+, 2015)
J/A+A/605/A111 : Surface rotation of Kepler red giant stars (Ceillier+, 2017)
J/A+A/613/A47 : Radial velocities of 12 evolved stars (Adamow+, 2018)
J/AJ/155/240 : A spectroscopic survey of field RHB stars (Afsar+, 2018)
J/ApJ/865/44 : Abundances of evolved stars from IGRINS. I. (Afsar+, 2018)
J/A+A/615/A31 : PTPS stars IV. (Deka-Szymankiewicz+, 2018)
J/AJ/156/142 : Cluster abund. for APOGEE using SDSS DR14 (Donor+, 2018)
J/A+A/623/A80 : Open clusters in APOGEE and GALAH surveys (Carrera+, 2019)
J/MNRAS/490/1821 : Abundances for stars in open clusters (Casamiquela+, 2019)
J/MNRAS/484/2000 : Study of Lithium-rich giants with GALAH (Deepak+, 2019)
J/A+A/633/A34 : Lithium in red giant stars (Charbonnel+, 2020)
J/A+A/634/A1 : NGC 1068 GRAVITY reconstructed image (GRAVITY+, 2020)
J/A+A/639/A7 : Li-rich and non-Li-rich K giants RVs (Jorissen+, 2020)
J/ApJS/254/42 : Hipparcos-Gaia (EDR3) Cat. of Accelerations (Brandt, 2021)
J/MNRAS/505/5340 : Lithium-rich stars in the GALAH survey DR3 (Martell+, 2021)
J/A+A/653/A72 : Stellar param. and Li abund. from GES iDR6 (Romano+, 2021)
J/AJ/161/128 : Abundances of 15 red giant stars with HPF (Sneden+, 2021)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 24 A24 --- Name Star name
26- 35 A10 --- OName Star indentifier in HD or BD catalog
37- 41 F5.2 mag Vmag [3.36/14.31]? SIMBAD Apparent V magnitude
43- 46 F4.2 mag B-V [0/1.86]? SIMBAD (B-V) color
48- 51 F4.2 mag V-J [0.48/3.55]? SIMBAD (V-J) color
53- 58 F6.3 mas plx [0.19/55] Gaia EDR3 parallax
60- 63 F4.1 --- log(e(Li)) [-1.8/4.5]? Lithium abundance
65- 66 I2 --- r_log(e(Li)) [1/24] Literature source code (1)
68- 71 I4 0.1nm EWHe [20/2434] Equivalent width of HeI 18030Å
line in Angstroms
73- 78 F6.2 km/s Broad [0.22/140] Line broadening (2)
--------------------------------------------------------------------------------
Note (1): Reference as follows:
1 = Bozkurt et al. 2022 (to be submitted)
2 = Adamow et al. 2014, J/A+A/569/A55
3 = Mott et al. (2017A&A...604A..44M 2017A&A...604A..44M)
4 = Kumar et al. (2011ApJ...730L..12K 2011ApJ...730L..12K)
5 = Brown et al. (1989ApJS...71..293B 1989ApJS...71..293B)
6 = Wallerstein & Sneden (1982ApJ...255..577W 1982ApJ...255..577W)
7 = Adamow et al. (2015A&A...581A..94A 2015A&A...581A..94A)
8 = Balachandran et al. (2000ApJ...542..978B 2000ApJ...542..978B)
9 = Hanni (1984SvAL...10...51H 1984SvAL...10...51H)
10 = Deepak & Reddy 2019, J/MNRAS/484/2000
11 = Adamow et al. 2018, J/A+A/613/A47
12 = Luck (1982PASP...94..811L 1982PASP...94..811L)
13 = Singh et al. (2019ApJ...878L..21S 2019ApJ...878L..21S)
14 = Zhou et al. (2018A&A...615A..74Z 2018A&A...615A..74Z)
15 = Reddy & Lambert (2016A&A...589A..57R 2016A&A...589A..57R)
16 = de Laverny et al. (2003A&A...410..937D 2003A&A...410..937D)
17 = Yan et al. (2018NatAs...2..790Y 2018NatAs...2..790Y)
18 = Singh et al. (2019MNRAS.482.3822S 2019MNRAS.482.3822S)
19 = Singh et al. (2021ApJ...913L...4S 2021ApJ...913L...4S)
20 = Bizyaev et al. 2010, J/AJ/140/1911
21 = Carlberg et al. 2012, J/ApJ/757/109
22 = Costa et al. (2015ApJ...807L..21C 2015ApJ...807L..21C)
23 = Yan et al. (2021NatAs...5...86Y 2021NatAs...5...86Y)
24 = Nagarajan et al. 2023, J/AJ/165/245
Note (2): If Broad<1km/s, then it is the Gaussian FWHM;
otherwised it is the rotational vsin(i) value.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 12-Sep-2024