J/ApJ/940/20     z<0.8 AGNs from MQC with robust lags from ZTF     (Guo+, 2022)

Active galactic nuclei continuum reverberation mapping based on Zwicky Transient Facility light curves. Guo H., Barth A.J., Wang S. <Astrophys. J., 940, 20 (2022)> =2022ApJ...940...20G 2022ApJ...940...20G
ADC_Keywords: Active gal. nuclei; Photometry; Optical; Black holes; Redshifts Keywords: Black hole physics ; Reverberation mapping ; Active galaxies Abstract: We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3days cadence gri-band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z<0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN. Within the framework of the "lamp-post" reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as RCE∝L0.48±0.04 with a scatter of 0.2dex, analogous to the well-known radius-luminosity relation of broad Hβ. These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the RCE-L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of the CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected. Description: In this work, we adopted the Zwicky Transient Facility (ZTF) data release (DR) 7 light curves with a baseline of 4 (2) yr in the gr(i) bands. ZTF, an automated time-domain survey, utilizes the 1.2m (48 inch) Schmidt telescope at Palomar Observatory and a 576-megapixel camera with 47deg2 field of view. In order to identify a large sample of AGNs having ZTF data suitable for lag measurement, we started with the Million Quasar Catalog (MQC; version 7.2 released on 2021 April 30; Flesch 2021arXiv210512985F 2021arXiv210512985F ; see Cat. VII/294). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table3.dat 310 455 Catalog -------------------------------------------------------------------------------- See also: VII/294 : The Million Quasars (Milliquas) catalogue, version 8 (Flesch, 2023) J/A+AS/110/469 : AGN from the RASS (Bade+, 1995) J/A+AS/128/507 : The Hamburg Quasar Survey. II. (Engels+ 1998) J/A+AS/139/575 : RASS AGN sample (Wei+, 1999) J/ApJ/613/682 : AGN central masses & broad-line regions (Peterson+, 2004) J/ApJ/622/129 : Lag-luminosity relationship in AGN (Sergeev+, 2005) J/ApJS/166/470 : SDSS-Spitzer type I QSOs IR photometry (Richards+, 2006) J/MNRAS/383/581 : Broad-line Balmer decrements in blue AGN (Dong+, 2008) J/ApJ/698/895 : Variations in QSOs optical flux (Kelly+, 2009) J/ApJ/753/106 : QSO variability with SDSS and POSS imaging (MacLeod+, 2012) J/ApJ/788/48 : X-ray through NIR photometry of NGC 2617 (Shappee+, 2014) J/ApJS/217/26 : Lick AGN monitoring 2011: light curves (Barth+, 2015) J/ApJ/806/22 : SEAMBHs IV. Hβ time lags (Du+, 2015) J/ApJ/806/129 : Space telescope RM project. II. Swift data (Edelson+, 2015) J/AJ/151/24 : LAMOST quasar survey: QSO properties from the DR1 (Ai+, 2016) J/ApJ/821/56 : Space telescope RM project. III. NGC 5548 (Fausnaugh+, 2016) J/ApJ/840/41 : X-ray/UV Swift monitoring of NGC 4151 (Edelson+, 2017) J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017) J/ApJ/836/186 : Continuum-band lags in SDSS QSOs from PS1 obs. (Jiang+, 2017) J/AJ/155/189 : LAMOST Quasar Survey: QSO properties from DR2&3 (Dong+, 2018) J/ApJ/854/107 : Light curves of 2 Seyfert 1 galaxies (Fausnaugh+, 2018) J/ApJ/862/123 : griz light curves of 15 DES quasars (Mudd+, 2018) J/ApJ/854/158 : z<0.5 PG quasars IR energy distributions (Shangguan+, 2018) J/ApJ/870/123 : Swift optical & UV flux of four AGNs (Edelson+, 2019) J/ApJ/880/126 : SDSS RM project: continuum lags (Homayouni+, 2019) J/ApJS/243/21 : Broad-line AGN from SDSS-DR7 (Liu+, 2019) J/ApJS/241/34 : SDSS Reverberation Mapping (SDSS-RM) project (Shen+, 2019) J/ApJS/240/6 : LAMOST Quasar Survey: Data Releases 4 and 5 (Yao+, 2019) J/ApJ/896/1 : SEAMBHs. XI. Mrk 142 X-ray to optical LCs (Cackett+, 2020) J/ApJS/249/17 : SDSS QSO DR14 spectral properties (Rakshit+, 2020) J/ApJ/925/52 : LAMP 2016: velocity-resolved Hb lags in Seyfert (U+, 2022) Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- Seq [1/455] Running sequence number 5- 13 F9.5 deg RAdeg Right ascension (J2000) (RA) 15- 23 F9.5 deg DEdeg [-28/80] Declination (J2000) (DEC) 25- 29 F5.3 --- z [0.003/0.8] Spectroscopic redshift from the Million Quasar Catalog (MQC, VII/294) 31- 35 F5.2 mag Rmag [8.2/17] Red optical magnitude from MQC 37- 56 A20 --- Name MQC source designation (see VII/294) 58- 61 A4 --- Type MQC classification type (1) 63- 68 A6 --- r_Name MQC Name reference (CITE) (2) 70- 75 A6 --- r_z MQC z reference (ZCITE) (2) 77- 80 F4.1 d lag(g-r)c [-9.7/19.5] Observed centroid lag between g and r-band from ICCF (CEN_GR) 82- 85 F4.1 d e_lag(g-r)c [0/19.1] Lower measurement error in lag(g-r)c (CENLOWGR) 87- 90 F4.1 d E_lag(g-r)c [0/21] Upper measurement error in lag(g-r)c (CENUPGR) 92- 96 F5.1 d lag(g-i)c [-21/25.3] Observed centroid lag between g and i-band from ICCF (CEN_GI) 98- 101 F4.1 d e_lag(g-i)c [0/27.2] Lower measurement error in lag(g-i)c (CENLOWGI) 103- 106 F4.1 d E_lag(g-i)c [0/33.2] Upper measurement error in lag(g-i)c (CENUPGI) 108- 111 F4.1 d lag(g-r)pk [-7.8/19.2] Observed peak lag between g and r-band from ICCF (PEAK_GR) 113- 116 F4.1 d e_lag(g-r)pk [0/18.4] Lower measurement error in lag(g-r)pk (PEAKLOWGR) 118- 121 F4.1 d E_lag(g-r)pk [0/20.4] Upper measurement error in lag(g-r)pk (PEAKUPGR) 123- 127 F5.1 d lag(g-i)pk [-20.2/25.2] Observed peak lag between g and i-band from ICCF (PEAK_GI) 129- 132 F4.1 d e_lag(g-i)pk [0/27] Lower measurement error in lag(g-i)pk (PEAKLOWGI) 134- 137 F4.1 d E_lag(g-i)pk [0/33.4] Upper measurement error in lag(g-i)pk (PEAKUPGI) 139- 143 F5.3 --- pGR [0/1] P-value for g-r lag from cross-correlation reliability test (P_GR) 145- 149 F5.3 --- pGI [0/0.5] P-value for g-i lag from cross-correlation reliability test (P_GI) 151- 156 F6.2 d lag(g-r)JAV [-10.3/25.4] Observed lag between g and r- band from JAVELIN (MED-GR-JAV) 158- 162 F5.2 d e_lag(g-r)JAV [0/27.6] Lower measurement error in lag(g-r)JAV (ERRLOWGR_JAV) 164- 168 F5.2 d E_lag(g-r)JAV [0.01/24.4] Upper measurement error in lag(g-r)JAV (ERRUPGR_JAV) 170- 175 F6.2 d lag(g-i)JAV [-23.3/28] Observed lag between g and i-band from JAVELIN (MEDGIJAV) 177- 181 F5.2 d e_lag(g-i)JAV [0.03/46.4] Lower measurement error in lag(g-i)JAV (ERRLOWGI_JAV) 183- 187 F5.2 d E_lag(g-i)JAV [0.07/39.3] Upper measurement error in lag(g-i)JAV (ERRUPGI_JAV) 189- 193 F5.2 [10-7W] L5100L19 [42.47/45.2]?=-1 Log monochromatic luminosity at 5100Å from L19 (Liu+ 2019, J/ApJS/243/21); erg/s (L5100_L19) 195- 199 F5.2 [Msun] logBHL19 [6/9.2]?=-1 Log virial BH mass based on Hβ from L19 (LOGBH_L19) (3) 201- 205 F5.2 [10-7W] L5100R20 [43.8/46.3]?=-1 Log monochromatic luminosity at 5100Å from R20 (Rakshit+ 2020, J/ApJS/249/17); erg/s (L5100_R20) 207- 211 F5.2 [Msun] logBHR20 [7/10]?=-1 Log virial BH mass based on Hβ from R20 (LOGBH_R20) (4) 213- 217 F5.2 [10-7W] L5100S18 [43.6/46.2]?=-1 Log monochromatic luminosity at 5100Å from S18 (Shangguan+ 2018, J/ApJ/854/158); erg/s (L5100_S18) 219- 223 F5.2 [Msun] logBHS18 [7/10]?=-1 Log virial BH mass based on Hβ from S18 (LOGBH_S18) (4) 225- 229 F5.2 [10-7W] L5100RM [42.88/45.7]?=-1 Log monochromatic luminosity at 5100Å from RM (L5100_RM) 231- 235 F5.2 [Msun] logBHRM [6.9/9.1]?=-1 Log RM BH mass based on Hβ (LOGBH_RM) (5) 237- 241 F5.2 [10-7W] L5100LA [0/46.2]?=-1 Log monochromatic luminosity at 5100Å from LAMOST (L5100_LAMOST) 243- 247 F5.2 [Msun] logBHLA [0/10]?=-1 Log virial BH mass based on Hβ from LAMOST DR1 to DR5 (LOGBH_LAMOST) (4) 249- 253 F5.2 [10-7W] L5100m [43/46.2]?=-1 Log monochromatic luminosity at 5100Å from self-measurements (L5100_MEASURED) 255- 259 F5.2 [Msun] logBHm [6.6/9.5]?=-1 Log virial BH mass based on Hβ (LOGBH_MEASURED) (4) 261- 265 F5.2 [10-7W] L5100 [42.47/46.3]?=-1 Log adopted fiducial monochromatic luminosity at 5100Å (L5100) 267- 271 F5.2 [Msun] logBH [6/10]?=-1 Log adopted fiducial virial BH mass (LOGBH) 273- 278 F6.3 [-] logEdd [0.003/4]?=-1 Eddington ratio based on fiducial luminosity & BH mass (LOG_EDD) 280- 284 F5.2 --- R2500SSD [0.04/7.6]?=-1 Shakura-Sunyaev disk (SSD) predicted disk size at 2500Å based on Eq 2 (R2500_SSD) (6) 286- 290 F5.2 --- R2500ICCF [0.08/13.2]?=-1 CE size at 2500Å based on observed inter-band lag modeling (R2500_ICCF) (6) 292- 296 F5.2 --- e_R2500ICCF [0/3]?=-1 Measurement error in R2500-ICCF (R2500ERRICCF) (6) 298- 302 F5.2 --- R2500JAV [0.1/21.1]?=-1 CE size at 2500Å based on observed inter-band lag modeling (R2500_JAV) (6) 304- 308 F5.2 --- e_R2500JAV [0/7.1]?=-1 Measurement error in R2500-JAV (R2500ERRJAV) (6) 310 I1 --- Flag [0/2]? Basic sample flag (FLAG_SAMPLE) (7) -------------------------------------------------------------------------------- Note (1): Legend of type/class (from VII/294): Q = QSO, type-I broad-line core-dominated A = AGN, type-I Seyferts/host-dominate R = radio association displayed X = X-ray association displayed 2 = double radio lobes displayed (declared by data-driven algorithm). Note (2): Numeric reference codes come from the Million Quasar catalog (VII/294 ; columns rName or rz) or: 4LAC = Fermi AGN v4 DR3, Fermi-LAT collab. 2022, J/ApJS/263/24 6dF = 6dF galaxy survey, Jones D.H. et al. 2009, Cat. VII/259 DR16 = SDSS-DR16 pipeline, Ahumada R. et al. 2020, V/154 data at http://data.sdss.org/sas/dr16/sdss/spectro/redux DR16Q = SDSS-DR16Q visual, Lyke B. et al. 2020, VII/289 2 files, data at http://data.sdss.org/sas/dr16/eboss/qso/DR16Q LAMDR6 = LAMOST-DR6, pipeline, http://dr6.lamost.org/ LAMQ3 = LAMOST Quasar DR3/DR2, Dong X.Y. et al. 2018, J/AJ/155/189 LAMQ5 = LAMOST Quasar DR5/DR4, Yao S. et al. 2019, J/ApJS/240/6 PGC = Principal Galaxy Catalog, Paturel G. et al. 2003, Cat. VII/237 UVQS = UV QSOs, Monroe T.R. et al. 2016, J/AJ/152/25 BASS = Swift-BAT AGN LIRAS = LoCuSS IR AGNs, Xu L. et al. 2015, J/ApJS/219/18 LOZAGN = Low-redshift AGN, Liu H.-Y. et al. 2019, J/ApJS/243/21 Note (3): using Green & Ho (2005ApJ...630..122G 2005ApJ...630..122G). Note (4): using VP06 (Vestergaard & Peterson 2006ApJ...641..689V 2006ApJ...641..689V) Note (5): From Bentz & Katz (2015PASP..127...67B 2015PASP..127...67B) and self-collections. Note (6): In units of light-days. Note (7): Basic sample flag as follows: 0 = Basic sample (361 occurrences) 1 = Parent sample; with reliable lag measurements (56 occurrences) 2 = Core sample; with the best-quality lags (38 occurrences) See Section 3.4. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 16-Sep-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line