J/ApJ/940/20 z<0.8 AGNs from MQC with robust lags from ZTF (Guo+, 2022)
Active galactic nuclei continuum reverberation mapping based on Zwicky Transient
Facility light curves.
Guo H., Barth A.J., Wang S.
<Astrophys. J., 940, 20 (2022)>
=2022ApJ...940...20G 2022ApJ...940...20G
ADC_Keywords: Active gal. nuclei; Photometry; Optical; Black holes; Redshifts
Keywords: Black hole physics ; Reverberation mapping ; Active galaxies
Abstract:
We perform a systematic survey of active galactic nuclei (AGNs)
continuum lags using ∼3days cadence gri-band light curves from the
Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at
z<0.8 with significant and consistent inter-band lags based on the
interpolated cross-correlation function method and the Bayesian method
JAVELIN. Within the framework of the "lamp-post" reprocessing model,
our findings are: (1) The continuum emission (CE) sizes inferred from
the data are larger than the disk sizes predicted by the standard
thin-disk model. (2) For a subset of the sample, the CE size exceeds
the theoretical limit of the self-gravity radius (12 lt-days) for
geometrically thin disks. (3) The CE size scales with continuum
luminosity as RCE∝L0.48±0.04 with a scatter of 0.2dex,
analogous to the well-known radius-luminosity relation of broad
Hβ. These findings suggest a significant contribution of diffuse
continuum emission from the broad-line region (BLR) to AGN continuum
lags. We find that the RCE-L relation can be explained by a
photoionization model that assumes ∼23% of the total flux comes from
the diffuse BLR emission. In addition, the ratio of the CE size and
model-predicted disk size anticorrelates with the continuum
luminosity, which is indicative of a potential nondisk BLR lag
contribution evolving with the luminosity. Finally, a robust positive
correlation between the CE size and black hole mass is detected.
Description:
In this work, we adopted the Zwicky Transient Facility (ZTF) data
release (DR) 7 light curves with a baseline of 4 (2) yr in the gr(i)
bands.
ZTF, an automated time-domain survey, utilizes the 1.2m (48 inch)
Schmidt telescope at Palomar Observatory and a 576-megapixel camera
with 47deg2 field of view.
In order to identify a large sample of AGNs having ZTF data suitable
for lag measurement, we started with the Million Quasar Catalog (MQC;
version 7.2 released on 2021 April 30; Flesch 2021arXiv210512985F 2021arXiv210512985F ;
see Cat. VII/294).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 310 455 Catalog
--------------------------------------------------------------------------------
See also:
VII/294 : The Million Quasars (Milliquas) catalogue, version 8 (Flesch, 2023)
J/A+AS/110/469 : AGN from the RASS (Bade+, 1995)
J/A+AS/128/507 : The Hamburg Quasar Survey. II. (Engels+ 1998)
J/A+AS/139/575 : RASS AGN sample (Wei+, 1999)
J/ApJ/613/682 : AGN central masses & broad-line regions (Peterson+, 2004)
J/ApJ/622/129 : Lag-luminosity relationship in AGN (Sergeev+, 2005)
J/ApJS/166/470 : SDSS-Spitzer type I QSOs IR photometry (Richards+, 2006)
J/MNRAS/383/581 : Broad-line Balmer decrements in blue AGN (Dong+, 2008)
J/ApJ/698/895 : Variations in QSOs optical flux (Kelly+, 2009)
J/ApJ/753/106 : QSO variability with SDSS and POSS imaging (MacLeod+, 2012)
J/ApJ/788/48 : X-ray through NIR photometry of NGC 2617 (Shappee+, 2014)
J/ApJS/217/26 : Lick AGN monitoring 2011: light curves (Barth+, 2015)
J/ApJ/806/22 : SEAMBHs IV. Hβ time lags (Du+, 2015)
J/ApJ/806/129 : Space telescope RM project. II. Swift data (Edelson+, 2015)
J/AJ/151/24 : LAMOST quasar survey: QSO properties from the DR1 (Ai+, 2016)
J/ApJ/821/56 : Space telescope RM project. III. NGC 5548 (Fausnaugh+, 2016)
J/ApJ/840/41 : X-ray/UV Swift monitoring of NGC 4151 (Edelson+, 2017)
J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017)
J/ApJ/836/186 : Continuum-band lags in SDSS QSOs from PS1 obs. (Jiang+, 2017)
J/AJ/155/189 : LAMOST Quasar Survey: QSO properties from DR2&3 (Dong+, 2018)
J/ApJ/854/107 : Light curves of 2 Seyfert 1 galaxies (Fausnaugh+, 2018)
J/ApJ/862/123 : griz light curves of 15 DES quasars (Mudd+, 2018)
J/ApJ/854/158 : z<0.5 PG quasars IR energy distributions (Shangguan+, 2018)
J/ApJ/870/123 : Swift optical & UV flux of four AGNs (Edelson+, 2019)
J/ApJ/880/126 : SDSS RM project: continuum lags (Homayouni+, 2019)
J/ApJS/243/21 : Broad-line AGN from SDSS-DR7 (Liu+, 2019)
J/ApJS/241/34 : SDSS Reverberation Mapping (SDSS-RM) project (Shen+, 2019)
J/ApJS/240/6 : LAMOST Quasar Survey: Data Releases 4 and 5 (Yao+, 2019)
J/ApJ/896/1 : SEAMBHs. XI. Mrk 142 X-ray to optical LCs (Cackett+, 2020)
J/ApJS/249/17 : SDSS QSO DR14 spectral properties (Rakshit+, 2020)
J/ApJ/925/52 : LAMP 2016: velocity-resolved Hb lags in Seyfert (U+, 2022)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq [1/455] Running sequence number
5- 13 F9.5 deg RAdeg Right ascension (J2000) (RA)
15- 23 F9.5 deg DEdeg [-28/80] Declination (J2000) (DEC)
25- 29 F5.3 --- z [0.003/0.8] Spectroscopic redshift from
the Million Quasar Catalog (MQC, VII/294)
31- 35 F5.2 mag Rmag [8.2/17] Red optical magnitude from MQC
37- 56 A20 --- Name MQC source designation (see VII/294)
58- 61 A4 --- Type MQC classification type (1)
63- 68 A6 --- r_Name MQC Name reference (CITE) (2)
70- 75 A6 --- r_z MQC z reference (ZCITE) (2)
77- 80 F4.1 d lag(g-r)c [-9.7/19.5] Observed centroid lag
between g and r-band from ICCF (CEN_GR)
82- 85 F4.1 d e_lag(g-r)c [0/19.1] Lower measurement error in
lag(g-r)c (CENLOWGR)
87- 90 F4.1 d E_lag(g-r)c [0/21] Upper measurement error in
lag(g-r)c (CENUPGR)
92- 96 F5.1 d lag(g-i)c [-21/25.3] Observed centroid lag between
g and i-band from ICCF (CEN_GI)
98- 101 F4.1 d e_lag(g-i)c [0/27.2] Lower measurement error in
lag(g-i)c (CENLOWGI)
103- 106 F4.1 d E_lag(g-i)c [0/33.2] Upper measurement error in
lag(g-i)c (CENUPGI)
108- 111 F4.1 d lag(g-r)pk [-7.8/19.2] Observed peak lag between g
and r-band from ICCF (PEAK_GR)
113- 116 F4.1 d e_lag(g-r)pk [0/18.4] Lower measurement error in
lag(g-r)pk (PEAKLOWGR)
118- 121 F4.1 d E_lag(g-r)pk [0/20.4] Upper measurement error in
lag(g-r)pk (PEAKUPGR)
123- 127 F5.1 d lag(g-i)pk [-20.2/25.2] Observed peak lag between g
and i-band from ICCF (PEAK_GI)
129- 132 F4.1 d e_lag(g-i)pk [0/27] Lower measurement error in
lag(g-i)pk (PEAKLOWGI)
134- 137 F4.1 d E_lag(g-i)pk [0/33.4] Upper measurement error in
lag(g-i)pk (PEAKUPGI)
139- 143 F5.3 --- pGR [0/1] P-value for g-r lag from
cross-correlation reliability test (P_GR)
145- 149 F5.3 --- pGI [0/0.5] P-value for g-i lag from
cross-correlation reliability test (P_GI)
151- 156 F6.2 d lag(g-r)JAV [-10.3/25.4] Observed lag between g and
r- band from JAVELIN (MED-GR-JAV)
158- 162 F5.2 d e_lag(g-r)JAV [0/27.6] Lower measurement error in
lag(g-r)JAV (ERRLOWGR_JAV)
164- 168 F5.2 d E_lag(g-r)JAV [0.01/24.4] Upper measurement error in
lag(g-r)JAV (ERRUPGR_JAV)
170- 175 F6.2 d lag(g-i)JAV [-23.3/28] Observed lag between g and
i-band from JAVELIN (MEDGIJAV)
177- 181 F5.2 d e_lag(g-i)JAV [0.03/46.4] Lower measurement error in
lag(g-i)JAV (ERRLOWGI_JAV)
183- 187 F5.2 d E_lag(g-i)JAV [0.07/39.3] Upper measurement error in
lag(g-i)JAV (ERRUPGI_JAV)
189- 193 F5.2 [10-7W] L5100L19 [42.47/45.2]?=-1 Log monochromatic
luminosity at 5100Å from L19
(Liu+ 2019, J/ApJS/243/21); erg/s
(L5100_L19)
195- 199 F5.2 [Msun] logBHL19 [6/9.2]?=-1 Log virial BH mass based on
Hβ from L19 (LOGBH_L19) (3)
201- 205 F5.2 [10-7W] L5100R20 [43.8/46.3]?=-1 Log monochromatic
luminosity at 5100Å from R20
(Rakshit+ 2020, J/ApJS/249/17); erg/s
(L5100_R20)
207- 211 F5.2 [Msun] logBHR20 [7/10]?=-1 Log virial BH mass based on
Hβ from R20 (LOGBH_R20) (4)
213- 217 F5.2 [10-7W] L5100S18 [43.6/46.2]?=-1 Log monochromatic
luminosity at 5100Å from S18
(Shangguan+ 2018, J/ApJ/854/158); erg/s
(L5100_S18)
219- 223 F5.2 [Msun] logBHS18 [7/10]?=-1 Log virial BH mass based on
Hβ from S18 (LOGBH_S18) (4)
225- 229 F5.2 [10-7W] L5100RM [42.88/45.7]?=-1 Log monochromatic
luminosity at 5100Å from RM (L5100_RM)
231- 235 F5.2 [Msun] logBHRM [6.9/9.1]?=-1 Log RM BH mass based on
Hβ (LOGBH_RM) (5)
237- 241 F5.2 [10-7W] L5100LA [0/46.2]?=-1 Log monochromatic
luminosity at 5100Å from LAMOST
(L5100_LAMOST)
243- 247 F5.2 [Msun] logBHLA [0/10]?=-1 Log virial BH mass based on
Hβ from LAMOST DR1 to DR5
(LOGBH_LAMOST) (4)
249- 253 F5.2 [10-7W] L5100m [43/46.2]?=-1 Log monochromatic
luminosity at 5100Å from
self-measurements (L5100_MEASURED)
255- 259 F5.2 [Msun] logBHm [6.6/9.5]?=-1 Log virial BH mass based
on Hβ (LOGBH_MEASURED) (4)
261- 265 F5.2 [10-7W] L5100 [42.47/46.3]?=-1 Log adopted fiducial
monochromatic luminosity at 5100Å
(L5100)
267- 271 F5.2 [Msun] logBH [6/10]?=-1 Log adopted fiducial virial
BH mass (LOGBH)
273- 278 F6.3 [-] logEdd [0.003/4]?=-1 Eddington ratio based on
fiducial luminosity & BH mass (LOG_EDD)
280- 284 F5.2 --- R2500SSD [0.04/7.6]?=-1 Shakura-Sunyaev disk (SSD)
predicted disk size at 2500Å based
on Eq 2 (R2500_SSD) (6)
286- 290 F5.2 --- R2500ICCF [0.08/13.2]?=-1 CE size at 2500Å based
on observed inter-band lag modeling
(R2500_ICCF) (6)
292- 296 F5.2 --- e_R2500ICCF [0/3]?=-1 Measurement error in
R2500-ICCF (R2500ERRICCF) (6)
298- 302 F5.2 --- R2500JAV [0.1/21.1]?=-1 CE size at 2500Å based
on observed inter-band lag modeling
(R2500_JAV) (6)
304- 308 F5.2 --- e_R2500JAV [0/7.1]?=-1 Measurement error in
R2500-JAV (R2500ERRJAV) (6)
310 I1 --- Flag [0/2]? Basic sample flag
(FLAG_SAMPLE) (7)
--------------------------------------------------------------------------------
Note (1): Legend of type/class (from VII/294):
Q = QSO, type-I broad-line core-dominated
A = AGN, type-I Seyferts/host-dominate
R = radio association displayed
X = X-ray association displayed
2 = double radio lobes displayed (declared by data-driven algorithm).
Note (2): Numeric reference codes come from the Million Quasar catalog
(VII/294 ; columns rName or rz) or:
4LAC = Fermi AGN v4 DR3, Fermi-LAT collab. 2022, J/ApJS/263/24
6dF = 6dF galaxy survey, Jones D.H. et al. 2009, Cat. VII/259
DR16 = SDSS-DR16 pipeline, Ahumada R. et al. 2020, V/154 data at
http://data.sdss.org/sas/dr16/sdss/spectro/redux
DR16Q = SDSS-DR16Q visual, Lyke B. et al. 2020, VII/289 2 files, data at
http://data.sdss.org/sas/dr16/eboss/qso/DR16Q
LAMDR6 = LAMOST-DR6, pipeline, http://dr6.lamost.org/
LAMQ3 = LAMOST Quasar DR3/DR2, Dong X.Y. et al. 2018, J/AJ/155/189
LAMQ5 = LAMOST Quasar DR5/DR4, Yao S. et al. 2019, J/ApJS/240/6
PGC = Principal Galaxy Catalog, Paturel G. et al. 2003, Cat. VII/237
UVQS = UV QSOs, Monroe T.R. et al. 2016, J/AJ/152/25
BASS = Swift-BAT AGN
LIRAS = LoCuSS IR AGNs, Xu L. et al. 2015, J/ApJS/219/18
LOZAGN = Low-redshift AGN, Liu H.-Y. et al. 2019, J/ApJS/243/21
Note (3): using Green & Ho (2005ApJ...630..122G 2005ApJ...630..122G).
Note (4): using VP06 (Vestergaard & Peterson 2006ApJ...641..689V 2006ApJ...641..689V)
Note (5): From Bentz & Katz (2015PASP..127...67B 2015PASP..127...67B) and self-collections.
Note (6): In units of light-days.
Note (7): Basic sample flag as follows:
0 = Basic sample (361 occurrences)
1 = Parent sample; with reliable lag measurements (56 occurrences)
2 = Core sample; with the best-quality lags (38 occurrences)
See Section 3.4.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 16-Sep-2024