J/ApJ/950/141  The ELM Survey South. II. 28 new WD binaries  (Kosakowski+, 2023)

The ELM Survey South. II. Two dozen new low-mass white dwarf binaries. Kosakowski A., Brown W.R., Kilic M., Kupfer T., Bedard A., Gianninas A., Agueros M.A., Barrientos M. <Astrophys. J., 950, 141 (2023)> =2023ApJ...950..141K 2023ApJ...950..141K
ADC_Keywords: Binaries, eclipsing; Stars, white dwarf; Spectra, optical; Radial velocities; Stars, masses; Parallaxes, trigonometric; Surveys Keywords: Compact binary stars ; Eclipsing binary stars ; White dwarf stars ; Spectroscopy Abstract: We present the results from our ongoing spectroscopic survey targeting low-mass white dwarf binaries, focusing on the southern sky. We used a Gaia DR2- and eDR3-based selection and identified 28 new binaries, including 19 new extremely low-mass (ELM) white dwarfs, one short period, likely eclipsing, DABZ, and two potential LISA binaries. We present the orbital and atmospheric parameters for each new binary based on our spectroscopic follow up. Four of our new binaries show periodic photometric variability in TESS 2 minutes cadence data, including one new eclipsing double-lined spectroscopic binary. Three others show periodic photometric variability in ZTF, including one new eclipsing binary. We provide estimates for the inclinations and scaled component radii for these ZTF variables, based on light-curve modeling of our high-speed photometric follow-up observations. Our observations have increased the sample of ELM Survey binaries identified in the southern sky to 41, an increase of 64%. Future time domain surveys, such as BlackGEM and the Vera C. Rubin Observatory Legacy Survey of Space and Time, will efficiently identify photometric variables in the southern sky and significantly increase the population of southern sky low-mass white dwarf binaries, leading to a more complete all-sky population of these systems. Description: We used a similar observing strategy as in previous extremely low-mass (ELM) Survey publications: we obtained one optical spectrum for each of our candidates to confirm their nature and perform spectroscopic fitting with model atmospheres. For objects consistent with ELM white dwarfs (5.0≲logg≲7.2), we obtained multiple additional spectra to check for radial velocity variability and constrain their orbital periods. For follow-up observations, we used: (1) the Southern Astrophysical Research Telescope (SOAR) 4.1m telescope with the Goodman spectrograph, with a spectral resolution ∼2.6Å over the wavelength range 3550-5300Å. These data were taken as part of the NOAO programs 2019B-0004, 2020B-0013, and 2021A-0007, and NOIRLab 2022A-161017. (2) the Gemini South 8.1m telescope, located on Cerro Pachon in Chile with the GMOS-S spectrograph and the Gemini North 8.1m telescope, located on Mauna Kea in Hawai'i with the GMOS spectrograph, with resolutions ∼2.8Å and ∼5.5Å over the spectral range 3600-6750Å. These data were obtained as part of the programs GN-2021A-Q-203, GN-2021A-Q-300, GS-2020B-Q-304, GS-2021A-Q-300, and GS-2021B-Q-304. (3) the 6.5m Walter Baade Magellan 1 Telescope at the Las Campanas Observatory in Chile with the Magellan Echellette (MagE) spectrograph, with a resolving power R∼4800 covering the wavelength range 3600-7000Å. (4) the 1.5m Tillinghast telescope at Fred Lawrence Whipple Observatory (FLWO) located on Mt. Hopkins in Arizona. Our primary setup used the FAST spectrograph with a spectral resolution ∼3.6Å covering the spectral range 3500-7400Å. A handful of observations used a slightly different setup resulting in a spectral resolution ∼1.8Å covering the spectral range 3650-5300Å. (5) the 6.5m Multiple Mirror Telescope (MMT) with the blue channel spectrograph, mainly with a ∼1.2Å resolution over the wavelength range 3600-4500Å. (6) the 2.4m Hiltner telescope at the MDM observatory, located in Kitt Peak, Arizona, with the OSMOS spectrograph, with a spectral resolution of 3.6Å over the wavelength range 3600-5930Å. (7) the 2.1m Otto Struve telescope at the McDonald Observatory near Fort Davis, Texas to obtain high-speed photometric follow up of our binaries to confirm the variability seen in various sky survey data archives. We used the ProEM frame-transfer CCD detector with either the BG40, g-, r-, or i-band filters. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file wdbin.dat 169 29 White dwarf parameters determined through optical spectroscopy for the 28 new binaries identified in this work (Table 1) and orbital solutions (Table 2) tablea1.dat 45 813 Radial velocity measurements for the 28 new binaries identified in this work tablea2.dat 101 287 Atmospheric parameters (assuming pure-hydrogen atmospheres) for objects observed as part of our follow-up campaign -------------------------------------------------------------------------------- See also: II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) I/345 : Gaia DR2 (Gaia Collaboration, 2018) I/350 : Gaia EDR3 (Gaia Collaboration, 2020) I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) II/385 : VLT Survey Telescope ATLAS DR4 (Shanks+, 2025) J/ApJS/156/47 : DA WDs from the Palomar Green Survey (Liebert+, 2005) J/ApJ/723/1072 : The ELM survey. I. Low-mass white dwarfs (Brown+, 2010) J/ApJ/743/138 : Sp. survey of bright white dwarfs (Gianninas+, 2011) J/A+A/557/A19 : Mass & age of extreme low-mass white dwarfs (Althaus+, 2013) J/ApJ/769/66 : The ELM survey. V. White dwarf binaries (Brown+, 2013) J/A+A/557/A119 : Eclipsing binary system LL Aquarii (Southworth, 2013) J/ApJ/794/35 : Binary WDs atmospheric parameters (Gianninas+, 2014) J/ApJ/812/167 : The ELM survey. VI. 11 new ELM WD bin. (Gianninas+, 2015) J/ApJ/818/155 : The ELM survey. VII. 15 new ELM WD candidates (Brown+, 2016) J/A+A/595/A35 : Low-mass helium WDs evolutionary models (Istrate+, 2016) J/ApJ/848/11 : Spectroscopic & photometric analysis of WDs (Bedard+, 2017) J/AJ/156/102 : The TESS Input Cat. & Candidate Target List (Stassun+, 2018) J/MNRAS/488/2892 : Gaia DR2 extremely low-mass WD candidates (Pelisoli+, 2019) J/ApJ/901/93 : Model atm. analysis of hot WDs from SDSSDR12 (Bedard+, 2020) J/ApJ/889/49 : The ELM Survey. VIII. Final double WD bin. (Brown+, 2020) J/A+A/634/A93 : Limb-darkening coeff. for compact stars (Claret+, 2020) J/ApJ/894/53 : ELM Survey South. I. 6 new ELM WDs RVs (Kosakowski+, 2020) J/A+A/650/A102 : SDSS J160429.12+100002.2 spectra (Irrgang+, 2021) J/ApJ/933/94 : The ELM survey. IX. SDSS+Gaia WD binaries (Brown+, 2022) J/ApJ/936/5 : LAMOST parameters for 188 white dwarfs (Wang+, 2022) Byte-by-byte Description of file: wdbin.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Object identifier 13- 15 A3 --- Flag Flag (s) (G1) 17- 18 I2 h RAh Hour of Right Ascension (ICRS) at Epoch=2016.0 20- 21 I2 min RAm Minute of Right Ascension (ICRS) at Epoch=2016.0 23- 28 F6.3 s RAs Second of Right Ascension (ICRS) at Epoch=2016.0 30 A1 --- DE- Sign of the Declination (ICRS) at Epoch=2016.0 31- 32 I2 deg DEd Degree of Declination (ICRS) at Epoch=2016.0 34- 35 I2 arcmin DEm Arcminute of Declination (ICRS) at Epoch=2016.0 37- 42 F6.3 arcsec DEs Arcsecond of Declination (ICRS) at Epoch=2016.0 44- 48 I5 K Teff [8740/22850] Stellar effective temperature 50- 52 I3 K e_Teff [130/500] Uncertainty in Teff 54- 57 F4.2 [cm/s2] logg [5.24/7.5] Log, surface gravity 59- 62 F4.2 [cm/s2] e_logg [0.04/0.3] Uncertainty in logg 64- 67 F4.2 Msun Mstar [0.18/0.43]? Stellar mass 69- 72 F4.2 Msun e_Mstar [0.01/0.04]? Uncertainty in Mstar 74- 77 F4.1 mag Gmag [13.8/19]? Gaia DR3 G-band magnitude 79- 82 F4.2 mas plx [0.5/6.1] Gaia DR3 parallax 84- 87 F4.2 mas e_plx [0.02/0.3] Uncertainty in plx 89- 96 F8.6 d Per [0.027/1.2] Orbital Period 98-105 F8.6 d e_Per [1e-06/0.01] Uncertainty in Per 107-111 F5.1 km/s K [79/514] Velocity semi-amplitude 113 I1 km/s E_K [8]? Upper uncertainty on K 115-117 F3.1 km/s e_K [1/9.5] Lower (or symmetric) uncertainty on K 119-124 F6.1 km/s gamma [-140/147]? Systemic velocity 126-128 F3.1 km/s E_gamma [6/7.1]? Upper uncertainty on K 130-133 F4.1 km/s e_gamma [1/29.5]? Lower (or symmetric) uncertainty on K 135 A1 --- l_M2 Limit flag on M2 137-140 F4.2 Msun M2 [0.1/1.1]? Companion mass 142-145 F4.2 Msun E_M2 [0.05/0.05]? Upper uncertainty on M2 147-150 F4.2 Msun e_M2 [0.01/0.1]? Lower (or symmetric) uncertainty on M2 152 A1 --- l_taum Limit flag on taum 154-160 F7.3 Gyr taum [0.021/371.4]? Merger timescale 162-167 F6.3 Gyr e_taum [0.001/71.7]? Uncertainty in taum 169 I1 --- Disk [0/1] Galactic disk (flag=1) or halo membership -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Object identifier 13- 25 F13.8 d HJD [3852.76/9935.72] Heliocentric Julian date; HJD-2450000.0 27- 35 F9.4 km/s RVel [-498/493] Radial Velocity 37- 45 F9.5 km/s e_RVel [1.3/113] Uncertainty in RVel -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 I19 --- Gaia Gaia DR3 identifier (source_id) 21- 23 A3 --- Flag Flag(s) (G1) 25- 26 I2 h RAh Hour of Right Ascension (ICRS) at Epoch=2016.0 28- 29 I2 min RAm Minute of Right Ascension (ICRS) at Epoch=2016.0 31- 36 F6.3 s RAs Second of Right Ascension (ICRS) at Epoch=2016.0 38 A1 --- DE- Sign of the Declination (ICRS) at Epoch=2016.0 39- 40 I2 deg DEd Degree of Declination (ICRS) at Epoch=2016.0 42- 43 I2 arcmin DEm Arcminute of Declination (ICRS) at Epoch=2016.0 45- 50 F6.3 arcsec DEs Arcsecond of Declination (ICRS) at Epoch=2016.0 52- 56 I5 K Teff [9290/45500] Stellar effective temperature 58- 61 I4 K e_Teff [140/5070] Uncertainty in Teff 63- 66 F4.2 [cm/s2] logg [4.9/8.4] Log, surface gravity 68- 71 F4.2 [cm/s2] e_logg [0.04/0.9] Uncertainty in logg 73- 77 F5.2 mag Gmag [13.2/20]? Gaia DR3 G-band magnitude 79- 84 F6.3 mag BP-RP [-0.51/0.55] Gaia DR3 BP-RP color 86- 90 F5.3 mag e_BP-RP [0.004/0.05] Uncertainty in BP-RP 92- 96 F5.2 mas plx [0.5/25.6] Gaia DR3 parallax 98-101 F4.2 mas e_plx [0.03/0.5] Uncertainty in plx -------------------------------------------------------------------------------- Global notes: Note (G1): Flags as follows: a = Photometric variability: TESS high-cadence; b = Photometric variability: ZTF; c = Pelisoli & Vos (2019, J/MNRAS/488/2892) ELM white dwarf candidate; s = The atmospheric parameter values for J1506-1125 displayed in this table are based on single-star models. We describe our multi-component modeling to J1506-1125 in Section 6, which does not identify a unique solution. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Kosakowski et al. Paper I. 2020ApJ...894...53K 2020ApJ...894...53K Cat. J/ApJ/894/53
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 04-Aug-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line