J/ApJ/950/95 GNIRS-DQS: SDSS 1.5<z<3.5 QSOs with NIR sp. obs. (Matthews+, 2023)

Gemini Near Infrared Spectrograph-Distant Quasar Survey: augmented spectroscopic catalog and a prescription for correcting UV-based quasar redshifts. Matthews B.M., Dix C., Shemmer O., Brotherton M.S., Myers A.D., Andruchow I., Brandt W.N., Gallagher S.C., Green R., Lira P., McLane J.N., Plotkin R.M., Richards G.T., Runnoe J.C., Schneider D.P., Strauss M.A. <Astrophys. J., 950, 95 (2023)> =2023ApJ...950...95M 2023ApJ...950...95M
ADC_Keywords: QSOs; Spectra, infrared; Surveys; Redshifts; Line Profiles; Equivalent widths; Active gal. nuclei; Optical Keywords: Quasars ; Surveys ; Active galactic nuclei Abstract: Quasars at z≳1 most often have redshifts measured from rest-frame ultraviolet emission lines. One of the most common such lines, CIVλ1549, shows blueshifts up to ∼5000km/s and in rare cases even higher. This blueshifting results in highly uncertain redshifts when compared to redshift determinations from rest-frame optical emission lines, e.g., from the narrow [OIII]λ5007 feature. We present spectroscopic measurements for 260 sources at 1.55≲z≲3.50 having -28.0≲Mi≲-30.0mag from the Gemini Near Infrared Spectrograph-Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the previous iteration, which contained 226 of the 260 sources whose measurements are improved upon in this work. We obtain reliable systemic redshifts based on [OIII]λ5007 for a subset of 121 sources, which we use to calibrate prescriptions for correcting UV-based redshifts. These prescriptions are based on a regression analysis involving CIV full-width-at-half-maximum intensity and equivalent width, along with the UV continuum luminosity at a rest-frame wavelength of 1350Å. Applying these corrections can improve the accuracy and the precision in the CIV-based redshift by up to ∼850km/s and ∼150km/s, respectively, which correspond to ∼8.5 and ∼1.5Mpc in comoving distance at z=2.5. Our prescriptions also improve the accuracy of the best available multifeature redshift determination algorithm by ∼100km/s, indicating that the spectroscopic properties of the CIV emission line can provide robust redshift estimates for high-redshift quasars. We discuss the prospects of our prescriptions for cosmological and quasar studies utilizing upcoming large spectroscopic surveys. Description: Our quasar sample is drawn from the Gemini Near Infrared Spectrograph--Distant Quasar Survey (GNIRS-DQS), which comprises the largest, most uniform sample of optically selected high-redshift quasars having NIR spectroscopic coverage (M21; Matthews+ 2021, J/ApJS/252/15). The GNIRS-DQS sources were selected from all SDSS quasars having -28.0≲Mi≲-30.0mag at 1.55≲z≲3.50 for which the Hβ and [OIII] emission lines can be covered in either the J, H, or K bands, spanning a monochromatic luminosity (λLλ) at 5100Å in the range of ∼1046-1047erg/s/Å. We present spectroscopic observations for 34 sources that were observed in semester 2020B as part of our GNIRS-DQS campaign. We also include spectroscopic observations for 11 sources that were observed in a similar fashion, albeit with a narrower slit, 0.30", in semester 2015A (program GN-2015A-Q-68; PI: Brotherton). Three of the 2020B sources and one of the 2015A sources, were observed twice in their respective semesters. The log of these additional observations is given in Table 1. In addition to the inclusion of 34 new sources, Tables 2 and 3 contain the most reliable data for the entire GNIRS-DQS sample following remeasurement of each spectrum with additional vetting and visual inspection, particularly with respect to the [OIII] and FeII fitting. These data therefore supersede the corresponding data presented in M21. All of the GNIRS spectra and their best-fit models are available electronically at https://datalab.noirlab.edu/data/gemini-llps/gnirs-dqs File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 77 333 The Gemini Near Infrared Spectrograph--Distant Quasar Survey (GNIRS-DQS) observation log table2.dat 327 260 Spectral measurements table3.dat 242 103 Column headings for supplemental emission-Line measurements table4.dat 256 260 *Column headings for Gaussian parameters of emission-line profiles table5.dat 89 121 Redshifts and velocity offsets table6.dat 31 9 Linear regression coefficients table7.dat 33 27 Linear regression coefficients for each redshift bin -------------------------------------------------------------------------------- Note on table4.dat: Independent Gaussian feature fit parameters for each emission line that was fit with both a narrow and broad Gaussian profile. -------------------------------------------------------------------------------- See also: VII/260 : The SDSS-DR7 quasar catalog (Schneider+, 2010) VII/279 : SDSS quasar catalog: twelfth data release (Paris+, 2017) VII/286 : SDSS quasar catalog, fourteenth data release (Paris+, 2018) VII/289 : SDSS quasar catalog, sixteenth data release (DR16Q) (Lyke+, 2020) J/AJ/130/381 : Blueshifted [O III] emission (Boroson+, 2005) J/AJ/133/2222 : Clustering of high-redshift QSOs from SDSS (Shen+, 2007) J/ApJ/666/757 : CIV 1549Å emission line in AGNs (Sulentic+, 2007) J/ApJ/680/169 : SDSS DR5 virial black hole masses (Shen+, 2008) J/ApJ/692/758 : BAL QSOs in SDSS-DR5 (Gibson+, 2009) J/MNRAS/405/2302 : Improved redshifts for SDSS quasar spectra (Hewett+, 2010) J/ApJ/726/20 : X-ray emission from quasars (Miller+, 2011) J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011) J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016) J/MNRAS/465/2120 : Correcting CIV-based virial BH masses (Coatman+, 2017) J/ApJ/887/196 : REQUIEM survey. I. Lya halos around QSOs (Farina+, 2019) J/MNRAS/487/3305 : Broad-line velocity shifts in 1.5<z<7.5 QSOs (Meyer+, 2019) J/ApJ/903/112 : SDSS Hb & CIV reverberation mapped AGNs (Dalla Bonta+, 2020) J/ApJ/905/51 : X-SHOOTER/ALMA QSOs at 5.78<z<7.54. I. (Schindler+, 2020) J/ApJS/252/15 : GNIRS-Distant Quasar Survey (GNIRS-DQS) (Matthews+, 2021) http://datalab.noirlab.edu/data/gemini-llps/gnirs-dqs : GNIRS-DQS (Gemini Near-Infrared Spectrograph - Distant Quasar Survey) homepage Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- SDSS SDSS DR16 object designation (JHHMMSS.ss+DDMMSS.s) 26- 30 F5.3 --- zSDSS [1.55/3.54] SDSS spectroscopic redshift (1) 32- 36 F5.2 mag Jmag [14.88/17.6] 2MASS J band magnitude 38- 42 F5.2 mag Hmag [14/16.5] 2MASS H band magnitude 44- 48 F5.2 mag Ksmag [13.5/16.7] 2MASS Ks band magnitude 50- 60 A11 "Y/M/D" ObsDate Observation date (UT) 62- 66 A5 --- SemID Semester of observation 68- 71 I4 s NExp [450/2350] Net exposure time 73 I1 --- Comm [0/3]? Additional comment code (2) 75 I1 --- BAL [0/1] Broad Absorption Line quasar (1=78 occurrences) 77 I1 --- RL [0/1] Radio-Loud quasar (1=15 occurrences) -------------------------------------------------------------------------------- Note (1): Value based on best available measurement in SDSS DR16 (Lyke+ 2020, VII/289, Table D1, column 27 "Z") Note (2): Comments as follows: 1 = At least one exposure did not meet our observation conditions requirements. 2 = Observation failed to provide spectrum of the source due to bad weather, instrument artifacts, or other technical difficulties during the observation. 3 = Reobserved and updated from M21 (Matthews+ 2021, J/ApJS/252/15) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- ID SDSS object designation (JHHMMSS.ss+DDMMSS.s) 26- 30 F5.3 --- zSys [1.54/3.54] Systemic redshift 32- 34 A3 --- n_zSys Emission line source for the systemic redshift (O3, Hb or Mg2) 36- 40 I5 0.1nm LC-Mg2 [8678/12709]? Mg II observed-frame wavelength (1) 42- 43 I2 0.1nm E_LC-Mg2 [1/17]? Upper uncertainty in LC-Mg2 45- 46 I2 0.1nm e_LC-Mg2 [1/22]? Lower uncertainty in LC-Mg2 48- 52 I5 km/s FWHM-Mg2 [1967/6096]? Mg II emission line FWHM 54- 57 I4 km/s E_FWHM-Mg2 [59/1524]? Upper uncertainty in FWHM-Mg2 59- 62 I4 km/s e_FWHM-Mg2 [78/2017]? Lower uncertainty in FWHM-Mg2 64- 65 I2 0.1nm EW-Mg2 [9/53]? Rest-frame Mg II emission line equivalent width 67- 68 I2 0.1nm E_EW-Mg2 [1/31]? Upper uncertainty in EW-Mg2 70- 71 I2 0.1nm e_EW-Mg2 [1/31]? Lower uncertainty in EW-Mg2 73- 81 E9.2 --- AS-Mg2 [-1.1/0.9]? Asymmetry of Mg II double Gaussian fit profile (2) 83- 86 F4.2 --- KURT-Mg2 [2/5.1]? Kurtosis of Mg II double Gaussian fit profile (3) 88- 92 I5 0.1nm LC-Hb [12386/22075] Hbeta observed-frame wavelength (1) 94- 95 I2 0.1nm E_LC-Hb [1/37] Upper uncertainty in LC-Hb 97- 98 I2 0.1nm e_LC-Hb [1/49] Lower uncertainty in LC-Hb 100- 104 I5 km/s FWHM-Hb [1705/12197] Hbeta emission line FWHM 106- 110 I5 km/s E_FWHM-Hb [1/13599] Upper uncertainty in FWHM-Hb 112- 115 I4 km/s e_FWHM-Hb [1/8981] Lower uncertainty in FWHM-Hb 117- 119 I3 0.1nm EW-Hb [13/128] Rest-frame Hbeta emission line equivalent width 121- 122 I2 0.1nm E_EW-Hb [1/57] Upper uncertainty in EW-Hb 124- 125 I2 0.1nm e_EW-Hb [1/76] Lower uncertainty in EW-Hb 127- 135 E9.2 --- AS-Hb [-0.95/0.84] Asymmetry of Hbeta double Gaussian fit profile (2) 137- 140 F4.2 --- KURT-Hb [1.8/4.6] Kurtosis of Hbeta double Gaussian fit profile (3) 142- 146 I5 0.1nm LC-O3 [12753/22719]? O III 5007A observed-frame wavelength (1) 148- 149 I2 0.1nm E_LC-O3 [1/39]? Upper uncertainty in LC-O3 151- 152 I2 0.1nm e_LC-O3 [1/51]? Lower uncertainty in LC-O3 154- 157 I4 km/s FWHM-O3 [318/5811]? O III 5007A emission line FWHM 159- 162 I4 km/s E_FWHM-O3 [1/9977]? Upper uncertainty in FWHM-O3 164- 167 I4 km/s e_FWHM-O3 [1/3119]? Lower uncertainty in FWHM-O3 169- 176 E8.2 0.1nm EW-O3 [6e-22/96.2] Rest-frame OIII 5007A emission line equivalent width 178- 185 E8.2 0.1nm E_EW-O3 [0.5/45.7]? Upper uncertainty in EW-O3 187- 194 E8.2 0.1nm e_EW-O3 [0.5/25.4]? Lower uncertainty in EW-O3 196- 204 E9.2 --- AS-O3 [-1.09/0.915]? Asymmetry of OIII 5007A double Gaussian fit profile (2) 206- 209 F4.2 --- KURT-O3 [1.74/6.54]? Kurtosis of OIII 5007A double Gaussian fit profile (3) 211- 215 I5 0.1nm LC-Ha [16767/22869]? Halpha observed-frame wavelength (1) 217- 218 I2 0.1nm E_LC-Ha [1/44]? Upper uncertainty in LC-Ha 220- 221 I2 0.1nm e_LC-Ha [1/58]? Lower uncertainty in LC-Ha 223- 226 I4 km/s FWHM-Ha [1824/9934]? Halpha emission line FWHM 228- 231 I4 km/s E_FWHM-Ha [14/2051]? Upper uncertainty in FWHM-Ha 233- 236 I4 km/s e_FWHM-Ha [18/2714]? Lower uncertainty in FWHM-Ha 238- 240 I3 0.1nm EW-Ha [161/987]? Rest-frame Halpha emission line equivalent width 242- 243 I2 0.1nm E_EW-Ha [1/11]? Upper uncertainty in EW-Ha 245- 246 I2 0.1nm e_EW-Ha [1/10]? Lower uncertainty in EW-Ha 248- 256 E9.2 --- AS-Ha [-0.74/0.55]? Asymmetry of Halpha double Gaussian fit profile (2) 258- 261 F4.2 --- KURT-Ha [2.77/5.2]? Kurtosis of Halpha double Gaussian fit profile (3) 263- 267 I5 km/s FWHM-Fe2 [1300/10000] FWHM of the kernel Gaussian used to broaden the FeII template 269- 276 E8.2 0.1nm EW-Fe2 [4.7e-09/138] Rest-frame Fe II emission line equivalent width 278- 285 E8.2 0.1nm E_EW-Fe2 [6.79e-24/4.8] Upper uncertainty of EW of FeII 287- 294 E8.2 0.1nm e_EW-Fe2 [6.3e-24/6.1] Lower uncertainty of EW of FeII 296- 301 F6.2 [cW/m2/nm] logF5100 [-16.9/-15.4] Log flux density at rest-frame 5100A 303- 307 F5.2 [10-7W] logL5100 [46/47.2] Log monochromatic luminosity at rest-frame 5100A 309- 327 A19 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s) as in Table 1; column added by CDS -------------------------------------------------------------------------------- Note (1): The emission link peak based on the peak-fit value. Note (2): Asymmetry is defined here as the skewness of the Gaussian fits, i.e., a measure of the asymmetry of the distribution about its mean, s=E(x-µ)33, where µ is the mean of x, σ is the standard deviation of x, and E(t) is the expectation value. Note (3): Kurtosis is the quantification of the "tails" of the Gaussian fits defined as k=E(x-µ)44. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- ID SDSS object designation (JHHMMSS.ss+DDMMSS.s) 26- 30 I5 0.1nm LC-Hd [11832/12614]? Hdelta observed-frame wavelength (1) 32 I1 0.1nm E_LC-Hd [1/4]? Upper uncertainty in LC-Hd 34 I1 0.1nm e_LC-Hd [1/5]? Lower uncertainty in LC-Hd 36- 39 I4 km/s FWHM-Hd [721/1080]? Hdelta emission line FWHM 41- 43 I3 km/s E_FWHM-Hd [31/682]? Upper uncertainty in FWHM-Hd 45- 47 I3 km/s e_FWHM-Hd [42/721]? Lower uncertainty in FWHM-Hd 49- 50 I2 0.1nm EW-Hd [3/12]? Rest-frame Hdelta emission line equivalent width 52 I1 0.1nm E_EW-Hd [1/1]? Upper uncertainty in EW-Hd 54 I1 0.1nm e_EW-Hd [1/1]? Lower uncertainty in EW-Hd 56- 64 E9.2 --- AS-Hd [-0.86/0.44]? Asymmetry of Hdelta double Gaussian fit profile 66- 69 F4.2 --- KURT-Hd [1.7/8.2]? Kurtosis of Hdelta double Gaussian fit profile 71- 75 I5 0.1nm LC-Hg [10083/17128]? Hgamma observed-frame wavelength (1) 77 I1 0.1nm E_LC-Hg [1/9]? Upper uncertainty in LC-Hg 79- 80 I2 0.1nm e_LC-Hg [1/12]? Lower uncertainty in LC-Hg 82- 85 I4 km/s FWHM-Hg [1164/7490]? Hgamma emission line FWHM 87- 90 I4 km/s E_FWHM-Hg [16/8496]? Upper uncertainty in FWHM-Hg 92- 95 I4 km/s e_FWHM-Hg [21/1920]? Lower uncertainty in FWHM-Hg 97- 98 I2 0.1nm EW-Hg [2/58]? Rest-frame Hgamma emission line equivalent width (2) 100- 101 I2 0.1nm E_EW-Hg [1/42]? Upper uncertainty in EW-Hg 103- 104 I2 0.1nm e_EW-Hg [1/38]? Lower uncertainty in EW-Hg 106- 114 E9.2 --- AS-Hg [-0.56/0.8]? Asymmetry of Hgamma double Gaussian fit profile 116- 119 F4.2 --- KURT-Hg [1.66/6.41]? Kurtosis of Hgamma double Gaussian fit profile 121- 125 I5 0.1nm LC-O2 [10554/18206]? OII 3727Å observed-frame wavelength (1) (2) 127- 128 I2 0.1nm E_LC-O2 [1/13]? Upper uncertainty in LC-O2 130- 131 I2 0.1nm e_LC-O2 [1/17]? Lower uncertainty in LC-O2 133- 136 I4 km/s FWHM-O2 [1315/8090]? OII 3727Å emission line FWHM 138- 142 I5 km/s E_FWHM-O2 [121/16534]? Upper uncertainty in FWHM-O2 144- 147 I4 km/s e_FWHM-O2 [160/8090]? Lower uncertainty in FWHM-O2 149- 150 I2 0.1nm EW-O2 [2/76]? Rest-frame OII 3727Å emission line equivalent width (2) 152- 153 I2 0.1nm E_EW-O2 [1/43]? Upper uncertainty in EW-O2 155- 156 I2 0.1nm e_EW-O2 [1/57]? Lower uncertainty in EW-O2 158- 166 E9.2 --- AS-O2 [-0.63/0.8]? Asymmetry of OII 3727Å double Gaussian fit profile 168- 171 F4.2 --- KURT-O2 [1.7/5.4]? Kurtosis of OII 3727Å double Gaussian fit profile 173- 177 I5 0.1nm LC-Ne3 [11160/19452]? NeIII 3870Å observed-frame wavelength (1) (3) 179- 180 I2 0.1nm E_LC-Ne3 [1/14]? Upper uncertainty in LC-Ne3 182- 183 I2 0.1nm e_LC-Ne3 [1/19]? Lower uncertainty in LC-Ne3 185- 188 I4 km/s FWHM-Ne3 [1388/6532]? NeIII 3870Å emission line FWHM 190- 193 I4 km/s E_FWHM-Ne3 [64/4199]? Upper uncertainty in FWHM-Ne3 195- 198 I4 km/s e_FWHM-Ne3 [85/3487]? Lower uncertainty in FWHM-Ne3 200- 201 I2 0.1nm EW-Ne3 [6/84]? Rest-frame NeIII 3870Å emission line equivalent width (2) 203- 204 I2 0.1nm E_EW-Ne3 [1/40]? Upper uncertainty in EW-Ne3 206- 207 I2 0.1nm e_EW-Ne3 [1/34]? Lower uncertainty in EW-Ne3 209- 217 E9.2 --- AS-Ne3 [-0.43/0.42]? Asymmetry of NeIII 3870Å double Gaussian fit profile 219- 222 F4.2 --- KURT-Ne3 [1.8/5.6]? Kurtosis of NeIII 3870Å double Gaussian fit profile 224- 242 A19 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s) as in Table 1; column added by CDS -------------------------------------------------------------------------------- Note (1): The emission link peak based on the peak-fit value. Note (2): [OII]3727Å Note (3): [NeIII]3870Å -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- ID SDSS object designation (JHHMMSS.ss+DDMMSS.s) 26- 29 I4 0.1nm n-LP-Mg2 [2771/2816]? Wavelength of the narrow MgII Gaussian profile 31- 32 I2 0.1nm n-STD-MG2 [5/50]? Width of the narrow MgII Gaussian profile 34- 37 I4 [cW/m2/nm] n-FL-Mg2 [0/1227]? Normalization of the narrow MgII Gaussian profile 39- 42 I4 0.1nm b-LP-Mg2 [2771/2818]? Wavelength of the broad MgII Gaussian profile 44- 47 I4 0.1nm b-STD-Mg2 [18/1000]? Width of the broad MgII Gaussian profile 49- 52 I4 [cW/m2/nm] b-FL-Mg2 [1/1018]? Normalization of the broad MgII Gaussian profile 54- 57 I4 0.1nm n-LP-O2 [3724/3733]? Wavelength of the narrow OII Gaussian profile 59- 60 I2 0.1nm n-STD-O2 [6/13]? Width of the narrow OII Gaussian profile 62- 65 I4 [cW/m2/nm] n-FL-O2 [1/67]? Normalization of the narrow OII Gaussian profile 67- 70 I4 0.1nm b-LP-O2 [3728/3738]? Wavelength of the broad OII Gaussian profile 72- 75 I4 0.1nm b-STD-O2 [57/2000]? Width of the broad OII Gaussian profile 77- 78 I2 [cW/m2/nm] b-FL-O2 [0/12]? Normalization of the broad OII Gaussian profile 80- 83 I4 0.1nm n-LP-Ne3 [3864/3914]? Wavelength of the narrow NeIII Gaussian profile 85- 86 I2 0.1nm n-STD-Ne3 [13/40]? Width of the narrow NeIII Gaussian profile 88- 89 I2 [cW/m2/nm] n-FL-Ne3 [0/94]? Normalization of the narrow NeIII Gaussian profile 91- 94 I4 0.1nm b-LP-Ne3 [3864/3921]? Wavelength of the broad NeIII Gaussian profile 96- 99 I4 0.1nm b-STD-Ne3 [55/2000]? Width of the broad NeIII Gaussian profile 101- 102 I2 [cW/m2/nm] b-FL-Ne3 [0/98]? Normalization of the broad NeIII Gaussian profile 104- 107 I4 0.1nm n-LP-Hd [4095/4158]? Wavelength of the narrow Hdelta Gaussian profile 109- 110 I2 0.1nm n-STD-Hd [11/53]? Width of the narrow Hdelta Gaussian profile 112- 113 I2 [cW/m2/nm] n-FL-Hd [0/52]? Normalization of the narrow Hdelta Gaussian profile 115- 118 I4 0.1nm b-LP-Hd [4095/4168]? Wavelength of the broad Hdelta Gaussian profile 120- 123 I4 0.1nm b-STD-Hd [56/2000]? Width of the broad Hdelta Gaussian profile 125- 127 I3 [cW/m2/nm] b-FL-Hd [0/115]? Normalization of the broad Hdelta Gaussian profile 129- 132 I4 0.1nm n-LP-Hg [4331/4434]? Wavelength of the narrow Hgamma Gaussian profile 134- 135 I2 0.1nm n-STD-Hg [10/79]? Width of the narrow Hgamma Gaussian profile 137- 139 I3 [cW/m2/nm] n-FL-Hg [0/326]? Normalization of the narrow Hgamma Gaussian profile 141- 144 I4 0.1nm b-LP-Hg [4331/4442]? Wavelength of the broad Hgamma Gaussian profile 146- 149 I4 0.1nm b-STD-Hg [48/1000]? Width of the broad Hgamma Gaussian profile 151- 153 I3 [cW/m2/nm] b-FL-Hg [0/191]? Normalization of the broad Hgamma Gaussian profile 155- 158 I4 0.1nm n-LP-Hb [4822/4927] Wavelength of the narrow Hbeta Gaussian profile 160- 162 I3 0.1nm n-STD-Hb [17/199] Width of the narrow Hbeta Gaussian profile 164- 166 I3 [cW/m2/nm] n-FL-Hb [0/989] Normalization of the narrow Hbeta Gaussian profile 168- 171 I4 0.1nm b-LP-Hb [4837/4934] Wavelength of the broad Hbeta Gaussian profile 173- 175 I3 0.1nm b-STD-Hb [50/324] Width of the broad Hbeta Gaussian profile 177- 179 I3 [cW/m2/nm] b-FL-Hb [0/700] Normalization of the broad Hbeta Gaussian profile 181- 184 I4 0.1nm n-LP-O31 [4932/5024]? Wavelength of the narrow [OIII]4959Å Gaussian profile 186- 187 I2 0.1nm n-STD-O31 [5/78]? Width of the narrow [OIII] 4959A Gaussian profile 189- 191 I3 [cW/m2/nm] n-FL-O31 [0/205]? Normalization of the narrow [OIII]4959Å Gaussian profile 193- 196 I4 0.1nm b-LP-O31 [4937/5021]? Wavelength of the broad [OIII]4959A Gaussian profile 198- 200 I3 0.1nm b-STD-O31 [9/131]? Width of the broad [OIII] 4959A Gaussian profile 202- 204 I3 [cW/m2/nm] b-FL-O31 [0/155]? Normalization of the broad [OIII]4959A Gaussian profile 206- 209 I4 0.1nm n-LP-O32 [4979/5072]? Wavelength of the narrow [OIII]5007A Gaussian profile 211- 212 I2 0.1nm n-STD-O32 [5/78]? Width of the narrow [OIII]5007A Gaussian profile 214- 216 I3 [cW/m2/nm] n-FL-O32 [0/615]? Normalization of the narrow [OIII]5007A Gaussian profile 218- 221 I4 0.1nm b-LP-O32 [4984/5069]? Wavelength of the broad [OIII]5007A Gaussian profile 223- 225 I3 0.1nm b-STD-O32 [9/131]? Width of the broad [OIII]5007A Gaussian profile 227- 229 I3 [cW/m2/nm] b-FL-O32 [0/465]? Normalization of the broad [OIII]5007A Gaussian profile 231- 234 I4 0.1nm n-LP-Ha [6476/6650]? Wavelength of the narrow Halpha Gaussian profile 236- 238 I3 0.1nm n-STD-Ha [22/170]? Width of the narrow Halpha Gaussian profile 240- 243 I4 [cW/m2/nm] n-FL-Ha [3/4188]? Normalization of the narrow Halpha Gaussian profile 245- 248 I4 0.1nm b-LP-Ha [6494/6652]? Wavelength of the broad Halpha Gaussian profile 250- 252 I3 0.1nm b-STD-Ha [127/431]? Width of the broad Halpha Gaussian profile 254- 256 I3 [cW/m2/nm] b-FL-Ha [1/993]? Normalization of the broad Halpha Gaussian profile -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- ID SDSS object designation (JHHMMSS.ss+DDMMSS.s) 26- 30 F5.3 --- zSys [1.56/3.54] Spectroscopic redshift (1) 32- 36 F5.3 --- zCiv [1.56/3.53] CIV-based redshift (2) 38- 42 I5 km/s Dvi-Civ [-3030/820] CIV-based velocity offset 44- 49 F6.3 --- zHW10 [1.56/3.54]?=-1 HW10-based redshift (3) 51- 55 I5 km/s Dvi-HW10 [-2720/2130]?=-1 HW10-based velocity offset 57- 61 F5.3 --- zPipe [0.064/3.55] SDSS Pipe-based redshift (4) 63- 69 I7 km/s Dvi-Pipe [-146280/1850] SDSS Pipe-based velocity offset 71- 89 A19 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s) as in Table 1; column added by CDS -------------------------------------------------------------------------------- Note (1): Redshifts determined from the [OIII]λpeak as described in M21 (Matthews+ 2021, J/ApJS/252/15). Note (2): Redshifts determined from the CIVλpeak values given in Paper II (Dix+ 2022, J/ApJ/950/96). Note (3): Acquired from HW10 (Hewett+ 2010, J/MNRAS/405/2302) and/or from P. Hewett (2022, private communication). Note (4): Acquired from Lyke+ (2020ApJS..250....8L 2020ApJS..250....8L; SDSS QSO cat. DR16, VII/289) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Method UV-based redshift method 11- 13 I3 --- Size [118/121] Sample size 15- 15 A1 --- coeff [abg] Regression coefficients (a=α; b=Β; g=γ) 17- 21 I5 --- Value [-2589/1156] Coefficient value 23- 25 I3 --- e_Value [36/536] Error on the coefficient value 27- 31 F5.2 --- t-val [-6.05/4.15] t-value of the coefficient -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Method UV-based redshift method 11- 11 I1 --- bin [1/3] Redshift bin (1) 13- 13 A1 --- coeff [abg] Regression coefficients 15- 19 I5 --- Value [-4802/6314] Coefficient value 21- 24 I4 --- e_Value [46/2670] Error on the coefficient value 26- 30 F5.2 --- t-val [-6.02/4.21] t-value of the coefficient 32- 33 I2 --- Size [12/71] Sample size -------------------------------------------------------------------------------- Note (1): Bins 1, 2, and 3 correspond to redshift ranges of and 3.20≲z≲3.50. 1.55≲z≲1.65, 2.10≲z≲2.40, respectively. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Dix et al. Paper II. 2023ApJ...950...96D 2023ApJ...950...96D
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 30-Jul-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line