J/ApJ/950/95 GNIRS-DQS: SDSS 1.5<z<3.5 QSOs with NIR sp. obs. (Matthews+, 2023)
Gemini Near Infrared Spectrograph-Distant Quasar Survey: augmented spectroscopic
catalog and a prescription for correcting UV-based quasar redshifts.
Matthews B.M., Dix C., Shemmer O., Brotherton M.S., Myers A.D.,
Andruchow I., Brandt W.N., Gallagher S.C., Green R., Lira P., McLane J.N.,
Plotkin R.M., Richards G.T., Runnoe J.C., Schneider D.P., Strauss M.A.
<Astrophys. J., 950, 95 (2023)>
=2023ApJ...950...95M 2023ApJ...950...95M
ADC_Keywords: QSOs; Spectra, infrared; Surveys; Redshifts; Line Profiles;
Equivalent widths; Active gal. nuclei; Optical
Keywords: Quasars ; Surveys ; Active galactic nuclei
Abstract:
Quasars at z≳1 most often have redshifts measured from rest-frame
ultraviolet emission lines. One of the most common such lines,
CIVλ1549, shows blueshifts up to ∼5000km/s and in rare cases
even higher. This blueshifting results in highly uncertain redshifts
when compared to redshift determinations from rest-frame optical
emission lines, e.g., from the narrow [OIII]λ5007 feature. We
present spectroscopic measurements for 260 sources at 1.55≲z≲3.50
having -28.0≲Mi≲-30.0mag from the Gemini Near Infrared
Spectrograph-Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the
previous iteration, which contained 226 of the 260 sources whose
measurements are improved upon in this work. We obtain reliable
systemic redshifts based on [OIII]λ5007 for a subset of
121 sources, which we use to calibrate prescriptions for correcting
UV-based redshifts. These prescriptions are based on a regression
analysis involving CIV full-width-at-half-maximum intensity and
equivalent width, along with the UV continuum luminosity at a
rest-frame wavelength of 1350Å. Applying these corrections can
improve the accuracy and the precision in the CIV-based redshift by up
to ∼850km/s and ∼150km/s, respectively, which correspond to ∼8.5 and
∼1.5Mpc in comoving distance at z=2.5. Our prescriptions also improve
the accuracy of the best available multifeature redshift determination
algorithm by ∼100km/s, indicating that the spectroscopic properties of
the CIV emission line can provide robust redshift estimates for
high-redshift quasars. We discuss the prospects of our prescriptions
for cosmological and quasar studies utilizing upcoming large
spectroscopic surveys.
Description:
Our quasar sample is drawn from the Gemini Near Infrared
Spectrograph--Distant Quasar Survey (GNIRS-DQS), which comprises the
largest, most uniform sample of optically selected high-redshift
quasars having NIR spectroscopic coverage (M21;
Matthews+ 2021, J/ApJS/252/15). The GNIRS-DQS sources were selected
from all SDSS quasars having -28.0≲Mi≲-30.0mag at 1.55≲z≲3.50
for which the Hβ and [OIII] emission lines can be covered in
either the J, H, or K bands, spanning a monochromatic luminosity
(λLλ) at 5100Å in the range of ∼1046-1047erg/s/Å.
We present spectroscopic observations for 34 sources that were
observed in semester 2020B as part of our GNIRS-DQS campaign. We also
include spectroscopic observations for 11 sources that were observed
in a similar fashion, albeit with a narrower slit, 0.30", in semester
2015A (program GN-2015A-Q-68; PI: Brotherton). Three of the 2020B
sources and one of the 2015A sources, were observed twice in their
respective semesters. The log of these additional observations is
given in Table 1.
In addition to the inclusion of 34 new sources, Tables 2 and 3 contain
the most reliable data for the entire GNIRS-DQS sample following
remeasurement of each spectrum with additional vetting and visual
inspection, particularly with respect to the [OIII] and FeII fitting.
These data therefore supersede the corresponding data presented in
M21.
All of the GNIRS spectra and their best-fit models are available
electronically at https://datalab.noirlab.edu/data/gemini-llps/gnirs-dqs
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 77 333 The Gemini Near Infrared Spectrograph--Distant Quasar
Survey (GNIRS-DQS) observation log
table2.dat 327 260 Spectral measurements
table3.dat 242 103 Column headings for supplemental emission-Line
measurements
table4.dat 256 260 *Column headings for Gaussian parameters of
emission-line profiles
table5.dat 89 121 Redshifts and velocity offsets
table6.dat 31 9 Linear regression coefficients
table7.dat 33 27 Linear regression coefficients for each redshift bin
--------------------------------------------------------------------------------
Note on table4.dat: Independent Gaussian feature fit parameters for each
emission line that was fit with both a narrow and broad Gaussian
profile.
--------------------------------------------------------------------------------
See also:
VII/260 : The SDSS-DR7 quasar catalog (Schneider+, 2010)
VII/279 : SDSS quasar catalog: twelfth data release (Paris+, 2017)
VII/286 : SDSS quasar catalog, fourteenth data release (Paris+, 2018)
VII/289 : SDSS quasar catalog, sixteenth data release (DR16Q) (Lyke+, 2020)
J/AJ/130/381 : Blueshifted [O III] emission (Boroson+, 2005)
J/AJ/133/2222 : Clustering of high-redshift QSOs from SDSS (Shen+, 2007)
J/ApJ/666/757 : CIV 1549Å emission line in AGNs (Sulentic+, 2007)
J/ApJ/680/169 : SDSS DR5 virial black hole masses (Shen+, 2008)
J/ApJ/692/758 : BAL QSOs in SDSS-DR5 (Gibson+, 2009)
J/MNRAS/405/2302 : Improved redshifts for SDSS quasar spectra (Hewett+, 2010)
J/ApJ/726/20 : X-ray emission from quasars (Miller+, 2011)
J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011)
J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016)
J/MNRAS/465/2120 : Correcting CIV-based virial BH masses (Coatman+, 2017)
J/ApJ/887/196 : REQUIEM survey. I. Lya halos around QSOs (Farina+, 2019)
J/MNRAS/487/3305 : Broad-line velocity shifts in 1.5<z<7.5 QSOs (Meyer+, 2019)
J/ApJ/903/112 : SDSS Hb & CIV reverberation mapped AGNs (Dalla Bonta+, 2020)
J/ApJ/905/51 : X-SHOOTER/ALMA QSOs at 5.78<z<7.54. I. (Schindler+, 2020)
J/ApJS/252/15 : GNIRS-Distant Quasar Survey (GNIRS-DQS) (Matthews+, 2021)
http://datalab.noirlab.edu/data/gemini-llps/gnirs-dqs : GNIRS-DQS (Gemini
Near-Infrared Spectrograph - Distant Quasar Survey) homepage
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- SDSS SDSS DR16 object designation
(JHHMMSS.ss+DDMMSS.s)
26- 30 F5.3 --- zSDSS [1.55/3.54] SDSS spectroscopic redshift (1)
32- 36 F5.2 mag Jmag [14.88/17.6] 2MASS J band magnitude
38- 42 F5.2 mag Hmag [14/16.5] 2MASS H band magnitude
44- 48 F5.2 mag Ksmag [13.5/16.7] 2MASS Ks band magnitude
50- 60 A11 "Y/M/D" ObsDate Observation date (UT)
62- 66 A5 --- SemID Semester of observation
68- 71 I4 s NExp [450/2350] Net exposure time
73 I1 --- Comm [0/3]? Additional comment code (2)
75 I1 --- BAL [0/1] Broad Absorption Line quasar
(1=78 occurrences)
77 I1 --- RL [0/1] Radio-Loud quasar (1=15 occurrences)
--------------------------------------------------------------------------------
Note (1): Value based on best available measurement in SDSS DR16
(Lyke+ 2020, VII/289, Table D1, column 27 "Z")
Note (2): Comments as follows:
1 = At least one exposure did not meet our observation conditions
requirements.
2 = Observation failed to provide spectrum of the source due to
bad weather, instrument artifacts, or other technical
difficulties during the observation.
3 = Reobserved and updated from M21 (Matthews+ 2021, J/ApJS/252/15)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- ID SDSS object designation
(JHHMMSS.ss+DDMMSS.s)
26- 30 F5.3 --- zSys [1.54/3.54] Systemic redshift
32- 34 A3 --- n_zSys Emission line source for the systemic
redshift (O3, Hb or Mg2)
36- 40 I5 0.1nm LC-Mg2 [8678/12709]? Mg II observed-frame
wavelength (1)
42- 43 I2 0.1nm E_LC-Mg2 [1/17]? Upper uncertainty in LC-Mg2
45- 46 I2 0.1nm e_LC-Mg2 [1/22]? Lower uncertainty in LC-Mg2
48- 52 I5 km/s FWHM-Mg2 [1967/6096]? Mg II emission line FWHM
54- 57 I4 km/s E_FWHM-Mg2 [59/1524]? Upper uncertainty in FWHM-Mg2
59- 62 I4 km/s e_FWHM-Mg2 [78/2017]? Lower uncertainty in FWHM-Mg2
64- 65 I2 0.1nm EW-Mg2 [9/53]? Rest-frame Mg II emission line
equivalent width
67- 68 I2 0.1nm E_EW-Mg2 [1/31]? Upper uncertainty in EW-Mg2
70- 71 I2 0.1nm e_EW-Mg2 [1/31]? Lower uncertainty in EW-Mg2
73- 81 E9.2 --- AS-Mg2 [-1.1/0.9]? Asymmetry of Mg II double
Gaussian fit profile (2)
83- 86 F4.2 --- KURT-Mg2 [2/5.1]? Kurtosis of Mg II double
Gaussian fit profile (3)
88- 92 I5 0.1nm LC-Hb [12386/22075] Hbeta observed-frame
wavelength (1)
94- 95 I2 0.1nm E_LC-Hb [1/37] Upper uncertainty in LC-Hb
97- 98 I2 0.1nm e_LC-Hb [1/49] Lower uncertainty in LC-Hb
100- 104 I5 km/s FWHM-Hb [1705/12197] Hbeta emission line FWHM
106- 110 I5 km/s E_FWHM-Hb [1/13599] Upper uncertainty in FWHM-Hb
112- 115 I4 km/s e_FWHM-Hb [1/8981] Lower uncertainty in FWHM-Hb
117- 119 I3 0.1nm EW-Hb [13/128] Rest-frame Hbeta emission line
equivalent width
121- 122 I2 0.1nm E_EW-Hb [1/57] Upper uncertainty in EW-Hb
124- 125 I2 0.1nm e_EW-Hb [1/76] Lower uncertainty in EW-Hb
127- 135 E9.2 --- AS-Hb [-0.95/0.84] Asymmetry of Hbeta double
Gaussian fit profile (2)
137- 140 F4.2 --- KURT-Hb [1.8/4.6] Kurtosis of Hbeta double
Gaussian fit profile (3)
142- 146 I5 0.1nm LC-O3 [12753/22719]? O III 5007A
observed-frame wavelength (1)
148- 149 I2 0.1nm E_LC-O3 [1/39]? Upper uncertainty in LC-O3
151- 152 I2 0.1nm e_LC-O3 [1/51]? Lower uncertainty in LC-O3
154- 157 I4 km/s FWHM-O3 [318/5811]? O III 5007A emission line
FWHM
159- 162 I4 km/s E_FWHM-O3 [1/9977]? Upper uncertainty in FWHM-O3
164- 167 I4 km/s e_FWHM-O3 [1/3119]? Lower uncertainty in FWHM-O3
169- 176 E8.2 0.1nm EW-O3 [6e-22/96.2] Rest-frame OIII 5007A
emission line equivalent width
178- 185 E8.2 0.1nm E_EW-O3 [0.5/45.7]? Upper uncertainty in EW-O3
187- 194 E8.2 0.1nm e_EW-O3 [0.5/25.4]? Lower uncertainty in EW-O3
196- 204 E9.2 --- AS-O3 [-1.09/0.915]? Asymmetry of OIII 5007A
double Gaussian fit profile (2)
206- 209 F4.2 --- KURT-O3 [1.74/6.54]? Kurtosis of OIII 5007A
double Gaussian fit profile (3)
211- 215 I5 0.1nm LC-Ha [16767/22869]? Halpha observed-frame
wavelength (1)
217- 218 I2 0.1nm E_LC-Ha [1/44]? Upper uncertainty in LC-Ha
220- 221 I2 0.1nm e_LC-Ha [1/58]? Lower uncertainty in LC-Ha
223- 226 I4 km/s FWHM-Ha [1824/9934]? Halpha emission line FWHM
228- 231 I4 km/s E_FWHM-Ha [14/2051]? Upper uncertainty in FWHM-Ha
233- 236 I4 km/s e_FWHM-Ha [18/2714]? Lower uncertainty in FWHM-Ha
238- 240 I3 0.1nm EW-Ha [161/987]? Rest-frame Halpha emission
line equivalent width
242- 243 I2 0.1nm E_EW-Ha [1/11]? Upper uncertainty in EW-Ha
245- 246 I2 0.1nm e_EW-Ha [1/10]? Lower uncertainty in EW-Ha
248- 256 E9.2 --- AS-Ha [-0.74/0.55]? Asymmetry of Halpha double
Gaussian fit profile (2)
258- 261 F4.2 --- KURT-Ha [2.77/5.2]? Kurtosis of Halpha double
Gaussian fit profile (3)
263- 267 I5 km/s FWHM-Fe2 [1300/10000] FWHM of the kernel Gaussian
used to broaden the FeII template
269- 276 E8.2 0.1nm EW-Fe2 [4.7e-09/138] Rest-frame Fe II emission
line equivalent width
278- 285 E8.2 0.1nm E_EW-Fe2 [6.79e-24/4.8] Upper uncertainty of EW
of FeII
287- 294 E8.2 0.1nm e_EW-Fe2 [6.3e-24/6.1] Lower uncertainty of EW of
FeII
296- 301 F6.2 [cW/m2/nm] logF5100 [-16.9/-15.4] Log flux density at
rest-frame 5100A
303- 307 F5.2 [10-7W] logL5100 [46/47.2] Log monochromatic luminosity at
rest-frame 5100A
309- 327 A19 --- SDSS SDSS object designation
(JHHMMSS.ss+DDMMSS.s) as in Table 1;
column added by CDS
--------------------------------------------------------------------------------
Note (1): The emission link peak based on the peak-fit value.
Note (2): Asymmetry is defined here as the skewness of the Gaussian fits,
i.e., a measure of the asymmetry of the distribution about its mean,
s=E(x-µ)3/σ3, where µ is the mean of x,
σ is the standard deviation of x, and E(t) is the
expectation value.
Note (3): Kurtosis is the quantification of the "tails" of the Gaussian fits
defined as k=E(x-µ)4/σ4.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- ID SDSS object designation (JHHMMSS.ss+DDMMSS.s)
26- 30 I5 0.1nm LC-Hd [11832/12614]? Hdelta observed-frame
wavelength (1)
32 I1 0.1nm E_LC-Hd [1/4]? Upper uncertainty in LC-Hd
34 I1 0.1nm e_LC-Hd [1/5]? Lower uncertainty in LC-Hd
36- 39 I4 km/s FWHM-Hd [721/1080]? Hdelta emission line FWHM
41- 43 I3 km/s E_FWHM-Hd [31/682]? Upper uncertainty in FWHM-Hd
45- 47 I3 km/s e_FWHM-Hd [42/721]? Lower uncertainty in FWHM-Hd
49- 50 I2 0.1nm EW-Hd [3/12]? Rest-frame Hdelta emission line
equivalent width
52 I1 0.1nm E_EW-Hd [1/1]? Upper uncertainty in EW-Hd
54 I1 0.1nm e_EW-Hd [1/1]? Lower uncertainty in EW-Hd
56- 64 E9.2 --- AS-Hd [-0.86/0.44]? Asymmetry of Hdelta double
Gaussian fit profile
66- 69 F4.2 --- KURT-Hd [1.7/8.2]? Kurtosis of Hdelta double Gaussian
fit profile
71- 75 I5 0.1nm LC-Hg [10083/17128]? Hgamma observed-frame
wavelength (1)
77 I1 0.1nm E_LC-Hg [1/9]? Upper uncertainty in LC-Hg
79- 80 I2 0.1nm e_LC-Hg [1/12]? Lower uncertainty in LC-Hg
82- 85 I4 km/s FWHM-Hg [1164/7490]? Hgamma emission line FWHM
87- 90 I4 km/s E_FWHM-Hg [16/8496]? Upper uncertainty in FWHM-Hg
92- 95 I4 km/s e_FWHM-Hg [21/1920]? Lower uncertainty in FWHM-Hg
97- 98 I2 0.1nm EW-Hg [2/58]? Rest-frame Hgamma emission line
equivalent width (2)
100- 101 I2 0.1nm E_EW-Hg [1/42]? Upper uncertainty in EW-Hg
103- 104 I2 0.1nm e_EW-Hg [1/38]? Lower uncertainty in EW-Hg
106- 114 E9.2 --- AS-Hg [-0.56/0.8]? Asymmetry of Hgamma double
Gaussian fit profile
116- 119 F4.2 --- KURT-Hg [1.66/6.41]? Kurtosis of Hgamma double
Gaussian fit profile
121- 125 I5 0.1nm LC-O2 [10554/18206]? OII 3727Å observed-frame
wavelength (1) (2)
127- 128 I2 0.1nm E_LC-O2 [1/13]? Upper uncertainty in LC-O2
130- 131 I2 0.1nm e_LC-O2 [1/17]? Lower uncertainty in LC-O2
133- 136 I4 km/s FWHM-O2 [1315/8090]? OII 3727Å emission line FWHM
138- 142 I5 km/s E_FWHM-O2 [121/16534]? Upper uncertainty in FWHM-O2
144- 147 I4 km/s e_FWHM-O2 [160/8090]? Lower uncertainty in FWHM-O2
149- 150 I2 0.1nm EW-O2 [2/76]? Rest-frame OII 3727Å emission line
equivalent width (2)
152- 153 I2 0.1nm E_EW-O2 [1/43]? Upper uncertainty in EW-O2
155- 156 I2 0.1nm e_EW-O2 [1/57]? Lower uncertainty in EW-O2
158- 166 E9.2 --- AS-O2 [-0.63/0.8]? Asymmetry of OII 3727Å double
Gaussian fit profile
168- 171 F4.2 --- KURT-O2 [1.7/5.4]? Kurtosis of OII 3727Å double
Gaussian fit profile
173- 177 I5 0.1nm LC-Ne3 [11160/19452]? NeIII 3870Å observed-frame
wavelength (1) (3)
179- 180 I2 0.1nm E_LC-Ne3 [1/14]? Upper uncertainty in LC-Ne3
182- 183 I2 0.1nm e_LC-Ne3 [1/19]? Lower uncertainty in LC-Ne3
185- 188 I4 km/s FWHM-Ne3 [1388/6532]? NeIII 3870Å emission line FWHM
190- 193 I4 km/s E_FWHM-Ne3 [64/4199]? Upper uncertainty in FWHM-Ne3
195- 198 I4 km/s e_FWHM-Ne3 [85/3487]? Lower uncertainty in FWHM-Ne3
200- 201 I2 0.1nm EW-Ne3 [6/84]? Rest-frame NeIII 3870Å emission
line equivalent width (2)
203- 204 I2 0.1nm E_EW-Ne3 [1/40]? Upper uncertainty in EW-Ne3
206- 207 I2 0.1nm e_EW-Ne3 [1/34]? Lower uncertainty in EW-Ne3
209- 217 E9.2 --- AS-Ne3 [-0.43/0.42]? Asymmetry of NeIII 3870Å
double Gaussian fit profile
219- 222 F4.2 --- KURT-Ne3 [1.8/5.6]? Kurtosis of NeIII 3870Å double
Gaussian fit profile
224- 242 A19 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s)
as in Table 1; column added by CDS
--------------------------------------------------------------------------------
Note (1): The emission link peak based on the peak-fit value.
Note (2): [OII]3727Å
Note (3): [NeIII]3870Å
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- ID SDSS object designation
(JHHMMSS.ss+DDMMSS.s)
26- 29 I4 0.1nm n-LP-Mg2 [2771/2816]? Wavelength of the narrow
MgII Gaussian profile
31- 32 I2 0.1nm n-STD-MG2 [5/50]? Width of the narrow MgII
Gaussian profile
34- 37 I4 [cW/m2/nm] n-FL-Mg2 [0/1227]? Normalization of the narrow
MgII Gaussian profile
39- 42 I4 0.1nm b-LP-Mg2 [2771/2818]? Wavelength of the broad
MgII Gaussian profile
44- 47 I4 0.1nm b-STD-Mg2 [18/1000]? Width of the broad MgII
Gaussian profile
49- 52 I4 [cW/m2/nm] b-FL-Mg2 [1/1018]? Normalization of the broad
MgII Gaussian profile
54- 57 I4 0.1nm n-LP-O2 [3724/3733]? Wavelength of the narrow
OII Gaussian profile
59- 60 I2 0.1nm n-STD-O2 [6/13]? Width of the narrow OII
Gaussian profile
62- 65 I4 [cW/m2/nm] n-FL-O2 [1/67]? Normalization of the narrow
OII Gaussian profile
67- 70 I4 0.1nm b-LP-O2 [3728/3738]? Wavelength of the broad
OII Gaussian profile
72- 75 I4 0.1nm b-STD-O2 [57/2000]? Width of the broad OII
Gaussian profile
77- 78 I2 [cW/m2/nm] b-FL-O2 [0/12]? Normalization of the broad OII
Gaussian profile
80- 83 I4 0.1nm n-LP-Ne3 [3864/3914]? Wavelength of the narrow
NeIII Gaussian profile
85- 86 I2 0.1nm n-STD-Ne3 [13/40]? Width of the narrow NeIII
Gaussian profile
88- 89 I2 [cW/m2/nm] n-FL-Ne3 [0/94]? Normalization of the narrow
NeIII Gaussian profile
91- 94 I4 0.1nm b-LP-Ne3 [3864/3921]? Wavelength of the broad
NeIII Gaussian profile
96- 99 I4 0.1nm b-STD-Ne3 [55/2000]? Width of the broad NeIII
Gaussian profile
101- 102 I2 [cW/m2/nm] b-FL-Ne3 [0/98]? Normalization of the broad
NeIII Gaussian profile
104- 107 I4 0.1nm n-LP-Hd [4095/4158]? Wavelength of the narrow
Hdelta Gaussian profile
109- 110 I2 0.1nm n-STD-Hd [11/53]? Width of the narrow Hdelta
Gaussian profile
112- 113 I2 [cW/m2/nm] n-FL-Hd [0/52]? Normalization of the narrow
Hdelta Gaussian profile
115- 118 I4 0.1nm b-LP-Hd [4095/4168]? Wavelength of the broad
Hdelta Gaussian profile
120- 123 I4 0.1nm b-STD-Hd [56/2000]? Width of the broad Hdelta
Gaussian profile
125- 127 I3 [cW/m2/nm] b-FL-Hd [0/115]? Normalization of the broad
Hdelta Gaussian profile
129- 132 I4 0.1nm n-LP-Hg [4331/4434]? Wavelength of the narrow
Hgamma Gaussian profile
134- 135 I2 0.1nm n-STD-Hg [10/79]? Width of the narrow Hgamma
Gaussian profile
137- 139 I3 [cW/m2/nm] n-FL-Hg [0/326]? Normalization of the narrow
Hgamma Gaussian profile
141- 144 I4 0.1nm b-LP-Hg [4331/4442]? Wavelength of the broad
Hgamma Gaussian profile
146- 149 I4 0.1nm b-STD-Hg [48/1000]? Width of the broad Hgamma
Gaussian profile
151- 153 I3 [cW/m2/nm] b-FL-Hg [0/191]? Normalization of the broad
Hgamma Gaussian profile
155- 158 I4 0.1nm n-LP-Hb [4822/4927] Wavelength of the narrow
Hbeta Gaussian profile
160- 162 I3 0.1nm n-STD-Hb [17/199] Width of the narrow Hbeta
Gaussian profile
164- 166 I3 [cW/m2/nm] n-FL-Hb [0/989] Normalization of the narrow
Hbeta Gaussian profile
168- 171 I4 0.1nm b-LP-Hb [4837/4934] Wavelength of the broad
Hbeta Gaussian profile
173- 175 I3 0.1nm b-STD-Hb [50/324] Width of the broad Hbeta
Gaussian profile
177- 179 I3 [cW/m2/nm] b-FL-Hb [0/700] Normalization of the broad
Hbeta Gaussian profile
181- 184 I4 0.1nm n-LP-O31 [4932/5024]? Wavelength of the narrow
[OIII]4959Å Gaussian profile
186- 187 I2 0.1nm n-STD-O31 [5/78]? Width of the narrow [OIII]
4959A Gaussian profile
189- 191 I3 [cW/m2/nm] n-FL-O31 [0/205]? Normalization of the narrow
[OIII]4959Å Gaussian profile
193- 196 I4 0.1nm b-LP-O31 [4937/5021]? Wavelength of the broad
[OIII]4959A Gaussian profile
198- 200 I3 0.1nm b-STD-O31 [9/131]? Width of the broad [OIII]
4959A Gaussian profile
202- 204 I3 [cW/m2/nm] b-FL-O31 [0/155]? Normalization of the broad
[OIII]4959A Gaussian profile
206- 209 I4 0.1nm n-LP-O32 [4979/5072]? Wavelength of the narrow
[OIII]5007A Gaussian profile
211- 212 I2 0.1nm n-STD-O32 [5/78]? Width of the narrow
[OIII]5007A Gaussian profile
214- 216 I3 [cW/m2/nm] n-FL-O32 [0/615]? Normalization of the narrow
[OIII]5007A Gaussian profile
218- 221 I4 0.1nm b-LP-O32 [4984/5069]? Wavelength of the broad
[OIII]5007A Gaussian profile
223- 225 I3 0.1nm b-STD-O32 [9/131]? Width of the broad
[OIII]5007A Gaussian profile
227- 229 I3 [cW/m2/nm] b-FL-O32 [0/465]? Normalization of the broad
[OIII]5007A Gaussian profile
231- 234 I4 0.1nm n-LP-Ha [6476/6650]? Wavelength of the narrow
Halpha Gaussian profile
236- 238 I3 0.1nm n-STD-Ha [22/170]? Width of the narrow Halpha
Gaussian profile
240- 243 I4 [cW/m2/nm] n-FL-Ha [3/4188]? Normalization of the narrow
Halpha Gaussian profile
245- 248 I4 0.1nm b-LP-Ha [6494/6652]? Wavelength of the broad
Halpha Gaussian profile
250- 252 I3 0.1nm b-STD-Ha [127/431]? Width of the broad Halpha
Gaussian profile
254- 256 I3 [cW/m2/nm] b-FL-Ha [1/993]? Normalization of the broad
Halpha Gaussian profile
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- ID SDSS object designation (JHHMMSS.ss+DDMMSS.s)
26- 30 F5.3 --- zSys [1.56/3.54] Spectroscopic redshift (1)
32- 36 F5.3 --- zCiv [1.56/3.53] CIV-based redshift (2)
38- 42 I5 km/s Dvi-Civ [-3030/820] CIV-based velocity offset
44- 49 F6.3 --- zHW10 [1.56/3.54]?=-1 HW10-based redshift (3)
51- 55 I5 km/s Dvi-HW10 [-2720/2130]?=-1 HW10-based velocity offset
57- 61 F5.3 --- zPipe [0.064/3.55] SDSS Pipe-based redshift (4)
63- 69 I7 km/s Dvi-Pipe [-146280/1850] SDSS Pipe-based velocity offset
71- 89 A19 --- SDSS SDSS object designation (JHHMMSS.ss+DDMMSS.s)
as in Table 1; column added by CDS
--------------------------------------------------------------------------------
Note (1): Redshifts determined from the [OIII]λpeak as
described in M21 (Matthews+ 2021, J/ApJS/252/15).
Note (2): Redshifts determined from the CIVλpeak values
given in Paper II (Dix+ 2022, J/ApJ/950/96).
Note (3): Acquired from HW10 (Hewett+ 2010, J/MNRAS/405/2302) and/or from
P. Hewett (2022, private communication).
Note (4): Acquired from Lyke+ (2020ApJS..250....8L 2020ApJS..250....8L; SDSS QSO cat. DR16, VII/289)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Method UV-based redshift method
11- 13 I3 --- Size [118/121] Sample size
15- 15 A1 --- coeff [abg] Regression coefficients
(a=α; b=Β; g=γ)
17- 21 I5 --- Value [-2589/1156] Coefficient value
23- 25 I3 --- e_Value [36/536] Error on the coefficient value
27- 31 F5.2 --- t-val [-6.05/4.15] t-value of the coefficient
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Method UV-based redshift method
11- 11 I1 --- bin [1/3] Redshift bin (1)
13- 13 A1 --- coeff [abg] Regression coefficients
15- 19 I5 --- Value [-4802/6314] Coefficient value
21- 24 I4 --- e_Value [46/2670] Error on the coefficient value
26- 30 F5.2 --- t-val [-6.02/4.21] t-value of the coefficient
32- 33 I2 --- Size [12/71] Sample size
--------------------------------------------------------------------------------
Note (1): Bins 1, 2, and 3 correspond to redshift ranges of and
3.20≲z≲3.50. 1.55≲z≲1.65, 2.10≲z≲2.40, respectively.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Dix et al. Paper II. 2023ApJ...950...96D 2023ApJ...950...96D
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 30-Jul-2025