J/ApJ/950/96 GNIRS-DQS II: CIV and MgII sp. measurements (Dix+, 2023)
Gemini Near Infrared Spectrograph-Distant Quasar Survey: prescriptions for
calibrating UV-based estimates of supermassive black hole masses in
high-redshift quasars.
Dix C., Matthews B., Shemmer O., Brotherton M.S., Myers A.D.,
Andruchow I., Brandt W.N., Ferrero G.A., Green R., Lira P., Plotkin R.M.,
Richards G.T., Schneider D.P.
<Astrophys. J., 950, 96 (2023)>
=2023ApJ...950...96D 2023ApJ...950...96D
ADC_Keywords: QSOs; Spectra, optical; Spectra, infrared; Surveys;
Equivalent widths; Black holes
Keywords: Active galactic nuclei ; Quasars ; Surveys ; Supermassive black holes
Abstract:
The most reliable single-epoch supermassive black hole mass (MBH)
estimates in quasars are obtained by using the velocity widths of
low-ionization emission lines, typically the Hβλ4861 line.
Unfortunately, this line is redshifted out of the optical band at z∼1,
leaving MBH estimates to rely on proxy rest-frame ultraviolet (UV)
emission lines, such as CIVλ1549 or MgIIλ2800, which
contain intrinsic challenges when measuring, resulting in uncertain
MBH estimates. In this work, we aim at correcting MBH estimates
derived from the CIV and MgII emission lines based on estimates
derived from the Hβ emission line. We find that employing the
equivalent width of CIV in deriving MBH estimates based on MgII and
CIV provides values that are closest to those obtained from Hβ.
We also provide prescriptions to estimate MBH values when only CIV,
only MgII, and both CIV and MgII are measurable. We find that
utilizing both emission lines, where available, reduces the scatter of
UV-based MBH estimates by ∼15% when compared to previous studies.
Lastly, we discuss the potential of our prescriptions to provide more
accurate and precise estimates of MBH given a much larger sample of
quasars at 3.20R≲z≲3.50, where both MgII and Hβ can be measured
in the same near-infrared spectrum.
Description:
Our sample is drawn from the Gemini Near Infrared
Spectrograph--Distant Quasar Survey (GNIRS-DQS;
Matthews+ 2023, J/ApJ/950/95 hereafter Paper I). Details of this
survey, the data quality, and all spectral fits performed for each
source are described in Matthews+ 2021, J/ApJS/252/15 and Paper I.
Briefly, GNIRS-DQS utilizes spectroscopy from the GNIRS instrument in
the ∼0.8-2.5um wavelength band at a spectral resolution of R∼1100 to
construct the largest uniform rest-frame optical spectral inventory
for high-redshift quasars. From all 260 GNIRS-DQS sources, we were
able to practically measure CIV emission-line properties for
177 sources from their respective SDSS spectra.
The GNIRS spectra provide MgII measurements for 99 of the GNIRS-DQS
sources (see Paper I): only 70 of these sources also have
corresponding CIV measurements following the removal of 22 BAL quasars
and seven RLQs.
Furthermore, we were able to measure the MgII profile in the SDSS
spectra that adequately covered that emission line in 179 of the
GNIRS-DQS sources: 34 and 13 of these sources do not have reliable CIV
measurements given that these are BAL quasars and RLQs, respectively.
From this sample of 179 quasars, 53 sources had a measurable MgII
profile in both the SDSS and the GNIRS-DQS spectra. When combining all
available MgII measurements, either from SDSS or GNIRS-DQS or both, we
compiled a total sample of 225 sources: 47, 16, and 2 of these sources
do not have reliable CIV measurements given that these are BAL
quasars, RLQs, or sources without adequate CIV measurements,
respectively.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 240 260 CIV and MgII spectroscopic measurements
table3.dat 146 260 MBH estimates
--------------------------------------------------------------------------------
See also:
VII/289 : SDSS quasar catalog, sixteenth data release (DR16Q) (Lyke+, 2020)
J/ApJ/699/800 : Mass functions of active black holes (Vestergaard+, 2009)
J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011)
J/ApJ/746/169 : Luminosity function of broad-line quasars (Shen+, 2012)
J/ApJS/217/26 : Lick AGN monitoring 2011: light curves (Barth+, 2015)
J/ApJS/216/4 : SDSS-RM project: technical overview (Shen+, 2015)
J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016)
J/MNRAS/465/2120 : Correcting CIV-based virial BH masses (Coatman+, 2017)
J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017)
J/ApJ/856/6 : SEAMBHs IX. 10 new Hβ light curves (Du+, 2018)
J/ApJ/865/56 : Emission line & R-band cont. LCs of 17 QSOs (Lira+, 2018)
J/ApJ/886/42 : Reverberation mapping & opt. sp. data of AGNs (Du+, 2019)
J/ApJ/887/38 : SDSS RM Project: CIV lags & LCs (Grier+, 2019)
J/MNRAS/488/1519 : Calibration of the virial factor f in SMBHs (Yu+, 2019)
J/ApJ/903/112 : SDSS Hb & CIV reverberation mapped AGNs (Dalla Bonta+, 2020)
J/ApJ/901/55 : SDSS-RM project: MgII lags from 4yrs obs. (Homayouni+, 2020)
J/ApJS/249/17 : SDSS QSO DR14 spectral properties (Rakshit+, 2020)
J/ApJ/905/51 : X-SHOOTER/ALMA QSOs at 5.78<z<7.54. I. (Schindler+, 2020)
J/MNRAS/491/5881 : Extended size-luminosity relation for RM AGNs (Yu+, 2020)
J/ApJS/253/20 : SEAMBHs XII. Reberberation mapping for PG QSOs (Hu+, 2021)
J/ApJ/915/129 : 13yr of spectrophotometrically monitored QSOs (Kaspi+, 2021)
J/ApJS/252/15 : GNIRS-Distant Quasar Survey (GNIRS-DQS) (Matthews+, 2021)
J/ApJ/923/262 : NIR spectroscopic obs. of z>6.5 quasars (Yang+, 2021)
J/ApJS/262/14 : AGNs with Hβ asymmetry. III. 15 PG quasars (Bao+, 2022)
J/ApJ/925/52 : LAMP 2016: velocity-resolved Hb lags in Sy gal. (U+, 2022)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- SDSS SDSS DR16 object designation
(JHHMMSS.ss+DDMMSS.s)
26- 32 F7.1 km/s FWHMCIV [1928/11952]?=-99 C IV Full-Width at
Half-Maximum
34- 39 F6.1 km/s E_FWHMCIV [23/2423]?=-99 Upper uncertainty in FWHMCIV
41- 46 F6.1 km/s e_FWHMCIV [34/3615]?=-99 Lower uncertainty in FWHMCIV
48- 54 F7.1 km/s MADCIV [543/11790]?=-99 C IV mean absolute deviation
56- 61 F6.1 km/s E_MADCIV [21/2255]?=-99 Upper uncertainty in MADCIV
63- 68 F6.1 km/s e_MADCIV [32/3363]?=-99 Lower uncertainty in MADCIV
70- 76 F7.1 km/s sigCIV [1802/12121]?=-99 C IV line dispersion
78- 83 F6.1 km/s E_sigCIV [33/3567]?=-99 Upper uncertainty in sigCIV
85- 90 F6.1 km/s e_sigCIV [49/5320]?=-99 Lower uncertainty in sigCIV
92- 96 F5.1 0.1nm EWCIV [2.8/135]?=-99 C IV equivalent width;
Angstrom
98- 102 F5.1 0.1nm E_EWCIV [0.2/11]?=-99 Upper uncertainty in EWCIV
104- 108 F5.1 0.1nm e_EWCIV [0.3/15]?=-99 Lower uncertainty in EWCIV
110- 115 F6.1 0.1nm pkCIV [3955/7016]?=-99 C IV observed-frame peak
line wavelength; Angstroms
117- 121 F5.1 0.1nm E_pkCIV [0/29.5]?=-99 Upper uncertainty in pkCIV
123- 127 F5.1 0.1nm e_pkCIV [0/43.9]?=-99 Lower uncertainty in pkCIV
129- 134 F6.1 km/s FWHMMgII [1319/8537]?=-99 Mg II Full-Width at
Half-Maximum
136- 141 F6.1 km/s E_FWHMMgII [27/1524]?=-99 Upper uncertainty in FWHMMgII
143- 148 F6.1 km/s e_FWHMMgII [36/2017]?=-99 Lower uncertainty in FWHMMgII
150- 155 F6.1 km/s MADMgII [606/6583]?=-99 Mg II mean absolute deviation
157- 162 F6.1 km/s E_MADMgII [22/6428]?=-99 Upper uncertainty in MADMgII
164- 169 F6.1 km/s e_MADMgII [29/3913]?=-99 Lower uncertainty in MADMgII
171- 176 F6.1 km/s sigMgII [761/9644]?=-99 Mg II line dispersion
178- 183 F6.1 km/s E_sigMgII [32/8812]?=-99 Upper uncertainty in sigMgII
185- 190 F6.1 km/s e_sigMgII [42/6210]?=-99 Lower uncertainty in sigMgII
192- 196 F5.1 0.1nm EWMgII [6/93]?=-99 Mg II equivalent width; Angstrom
198- 202 F5.1 0.1nm E_EWMgII [0/37]?=-99 Upper uncertainty in EWMgII
204- 208 F5.1 0.1nm e_EWMgII [0/49]?=-99 Lower uncertainty in EWMgII
210- 216 F7.1 0.1nm pkMgII [7150/12709]?=-99 Mg II observed-frame peak
line wavelength; Angstroms
218- 222 F5.1 0.1nm E_pkMgII [0/20]?=-99 Upper uncertainty in pkMgII
224- 228 F5.1 0.1nm e_pkMgII [0/26]?=-99 Lower uncertainty in pkMgII
230- 234 F5.1 10-7W logL1350 [45.7/47.5]?=-99 Log 1350A luminosity; erg/s
236- 240 F5.1 10-7W logL3000 [46.2/47.2]?=-99 Log 3000A luminosity; erg/s
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 A4 --- --- [SDSS]
6- 24 A19 --- SDSS SDSS DR16 object designation
(JHHMMSS.ss+DDMMSS.s)
26- 30 F5.2 [Msun] MHbFWHM [8/10.1] Log black hole mass from Hβ
Full-Width at Half-Maximum
32- 35 F4.2 [Msun] MCIVMAD [1/9.8] Log black hole mass from CIV mean
absolute deviation
37- 41 F5.2 [Msun] MCIVsig [7.6/10.2] Log black hole mass from CIV
line dispersion
43- 48 F6.2 [Msun] MCIVVPO6 [8.2/10.6]?=-99 Log black hole mass from
Vestergaard & Peterson 2006ApJ...641..689V 2006ApJ...641..689V
50- 55 F6.2 [Msun] MCIVP17 [8/10.1]?=-99 Log black hole mass from
Park+ 2017ApJ...839...93P 2017ApJ...839...93P
57- 62 F6.2 [Msun] MCIVC17 [5/10.9]?=-99 Log black hole mass from
Coatman+ 2017, J/MNRAS/465/2120
64- 69 F6.2 [Msun] MCIVFWHM [7/10.3]?=-99 Log black hole mass from CIV
Full-Width at Half-Maximum
71- 76 F6.2 [Msun] MMgIIMAD [7.2/10.5]?=-99 Log black hole mass from
MgII mean absolute deviation
78- 83 F6.2 [Msun] MMgIIsig [8.2/10.4]?=-99 Log black hole mass from
MgII line dispersion
85- 90 F6.2 [Msun] MMgIIVO09 [8.3/10]?=-99 Log black hole mass from
Vestergaard & Osmer 2009, J/ApJ/699/800
92- 97 F6.2 [Msun] MMgIIZ15 [8.5/10.2]?=-99 Log black hole mass from
Zuo+ 2015ApJ...799..189Z 2015ApJ...799..189Z
99- 104 F6.2 [Msun] MMgIIL20 [8.4/10.2]?=-99 Log black hole mass from
Le+ 2020ApJ...901...35L 2020ApJ...901...35L
106- 111 F6.2 [Msun] MFWHMw [8.4/10.1]?=-99 Log black hole mass with
CIV Full-Width at Half-Maximum
113- 118 F6.2 [Msun] MFWHMwo [8.4/10.2]?=-99 Log black hole mass without
CIV Full-Width at Half-Maximum
120- 125 F6.2 [Msun] MMADw [8.4/10.3]?=-99 Log black hole mass with
CIV mean absolute deviation
127- 132 F6.2 [Msun] MMADwo [8.5/10.5]?=-99 Log black hole mass without
CIV mean absolute deviation
134- 139 F6.2 [Msun] Msigw [8.4/10.4]?=-99 Log black hole mass with
CIV line dispersion
141- 146 F6.2 [Msun] Msigwo [8.4/10.5]?=-99 Log black hole mass without
CIV line dispersion
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Matthews et al. 2021ApJS..252...15M 2021ApJS..252...15M Cat. J/ApJS/252/15
Matthews et al. Paper I. 2023ApJ...950...95M 2023ApJ...950...95M Cat. J/ApJ/950/95
Dix et al. Paper II. 2023ApJ...950...96D 2023ApJ...950...96D This catalog
Ahmed et al. 2024ApJ...968...77A 2024ApJ...968...77A
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 31-Jul-2025