J/ApJ/950/96      GNIRS-DQS II: CIV and MgII sp. measurements      (Dix+, 2023)

Gemini Near Infrared Spectrograph-Distant Quasar Survey: prescriptions for calibrating UV-based estimates of supermassive black hole masses in high-redshift quasars. Dix C., Matthews B., Shemmer O., Brotherton M.S., Myers A.D., Andruchow I., Brandt W.N., Ferrero G.A., Green R., Lira P., Plotkin R.M., Richards G.T., Schneider D.P. <Astrophys. J., 950, 96 (2023)> =2023ApJ...950...96D 2023ApJ...950...96D
ADC_Keywords: QSOs; Spectra, optical; Spectra, infrared; Surveys; Equivalent widths; Black holes Keywords: Active galactic nuclei ; Quasars ; Surveys ; Supermassive black holes Abstract: The most reliable single-epoch supermassive black hole mass (MBH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβλ4861 line. Unfortunately, this line is redshifted out of the optical band at z∼1, leaving MBH estimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as CIVλ1549 or MgIIλ2800, which contain intrinsic challenges when measuring, resulting in uncertain MBH estimates. In this work, we aim at correcting MBH estimates derived from the CIV and MgII emission lines based on estimates derived from the Hβ emission line. We find that employing the equivalent width of CIV in deriving MBH estimates based on MgII and CIV provides values that are closest to those obtained from Hβ. We also provide prescriptions to estimate MBH values when only CIV, only MgII, and both CIV and MgII are measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-based MBH estimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates of MBH given a much larger sample of quasars at 3.20R≲z≲3.50, where both MgII and Hβ can be measured in the same near-infrared spectrum. Description: Our sample is drawn from the Gemini Near Infrared Spectrograph--Distant Quasar Survey (GNIRS-DQS; Matthews+ 2023, J/ApJ/950/95 hereafter Paper I). Details of this survey, the data quality, and all spectral fits performed for each source are described in Matthews+ 2021, J/ApJS/252/15 and Paper I. Briefly, GNIRS-DQS utilizes spectroscopy from the GNIRS instrument in the ∼0.8-2.5um wavelength band at a spectral resolution of R∼1100 to construct the largest uniform rest-frame optical spectral inventory for high-redshift quasars. From all 260 GNIRS-DQS sources, we were able to practically measure CIV emission-line properties for 177 sources from their respective SDSS spectra. The GNIRS spectra provide MgII measurements for 99 of the GNIRS-DQS sources (see Paper I): only 70 of these sources also have corresponding CIV measurements following the removal of 22 BAL quasars and seven RLQs. Furthermore, we were able to measure the MgII profile in the SDSS spectra that adequately covered that emission line in 179 of the GNIRS-DQS sources: 34 and 13 of these sources do not have reliable CIV measurements given that these are BAL quasars and RLQs, respectively. From this sample of 179 quasars, 53 sources had a measurable MgII profile in both the SDSS and the GNIRS-DQS spectra. When combining all available MgII measurements, either from SDSS or GNIRS-DQS or both, we compiled a total sample of 225 sources: 47, 16, and 2 of these sources do not have reliable CIV measurements given that these are BAL quasars, RLQs, or sources without adequate CIV measurements, respectively. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 240 260 CIV and MgII spectroscopic measurements table3.dat 146 260 MBH estimates -------------------------------------------------------------------------------- See also: VII/289 : SDSS quasar catalog, sixteenth data release (DR16Q) (Lyke+, 2020) J/ApJ/699/800 : Mass functions of active black holes (Vestergaard+, 2009) J/ApJS/194/45 : QSO properties from SDSS-DR7 (Shen+, 2011) J/ApJ/746/169 : Luminosity function of broad-line quasars (Shen+, 2012) J/ApJS/217/26 : Lick AGN monitoring 2011: light curves (Barth+, 2015) J/ApJS/216/4 : SDSS-RM project: technical overview (Shen+, 2015) J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016) J/MNRAS/465/2120 : Correcting CIV-based virial BH masses (Coatman+, 2017) J/ApJ/851/21 : SDSS RM project first year of observations (Grier+, 2017) J/ApJ/856/6 : SEAMBHs IX. 10 new Hβ light curves (Du+, 2018) J/ApJ/865/56 : Emission line & R-band cont. LCs of 17 QSOs (Lira+, 2018) J/ApJ/886/42 : Reverberation mapping & opt. sp. data of AGNs (Du+, 2019) J/ApJ/887/38 : SDSS RM Project: CIV lags & LCs (Grier+, 2019) J/MNRAS/488/1519 : Calibration of the virial factor f in SMBHs (Yu+, 2019) J/ApJ/903/112 : SDSS Hb & CIV reverberation mapped AGNs (Dalla Bonta+, 2020) J/ApJ/901/55 : SDSS-RM project: MgII lags from 4yrs obs. (Homayouni+, 2020) J/ApJS/249/17 : SDSS QSO DR14 spectral properties (Rakshit+, 2020) J/ApJ/905/51 : X-SHOOTER/ALMA QSOs at 5.78<z<7.54. I. (Schindler+, 2020) J/MNRAS/491/5881 : Extended size-luminosity relation for RM AGNs (Yu+, 2020) J/ApJS/253/20 : SEAMBHs XII. Reberberation mapping for PG QSOs (Hu+, 2021) J/ApJ/915/129 : 13yr of spectrophotometrically monitored QSOs (Kaspi+, 2021) J/ApJS/252/15 : GNIRS-Distant Quasar Survey (GNIRS-DQS) (Matthews+, 2021) J/ApJ/923/262 : NIR spectroscopic obs. of z>6.5 quasars (Yang+, 2021) J/ApJS/262/14 : AGNs with Hβ asymmetry. III. 15 PG quasars (Bao+, 2022) J/ApJ/925/52 : LAMP 2016: velocity-resolved Hb lags in Sy gal. (U+, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- SDSS SDSS DR16 object designation (JHHMMSS.ss+DDMMSS.s) 26- 32 F7.1 km/s FWHMCIV [1928/11952]?=-99 C IV Full-Width at Half-Maximum 34- 39 F6.1 km/s E_FWHMCIV [23/2423]?=-99 Upper uncertainty in FWHMCIV 41- 46 F6.1 km/s e_FWHMCIV [34/3615]?=-99 Lower uncertainty in FWHMCIV 48- 54 F7.1 km/s MADCIV [543/11790]?=-99 C IV mean absolute deviation 56- 61 F6.1 km/s E_MADCIV [21/2255]?=-99 Upper uncertainty in MADCIV 63- 68 F6.1 km/s e_MADCIV [32/3363]?=-99 Lower uncertainty in MADCIV 70- 76 F7.1 km/s sigCIV [1802/12121]?=-99 C IV line dispersion 78- 83 F6.1 km/s E_sigCIV [33/3567]?=-99 Upper uncertainty in sigCIV 85- 90 F6.1 km/s e_sigCIV [49/5320]?=-99 Lower uncertainty in sigCIV 92- 96 F5.1 0.1nm EWCIV [2.8/135]?=-99 C IV equivalent width; Angstrom 98- 102 F5.1 0.1nm E_EWCIV [0.2/11]?=-99 Upper uncertainty in EWCIV 104- 108 F5.1 0.1nm e_EWCIV [0.3/15]?=-99 Lower uncertainty in EWCIV 110- 115 F6.1 0.1nm pkCIV [3955/7016]?=-99 C IV observed-frame peak line wavelength; Angstroms 117- 121 F5.1 0.1nm E_pkCIV [0/29.5]?=-99 Upper uncertainty in pkCIV 123- 127 F5.1 0.1nm e_pkCIV [0/43.9]?=-99 Lower uncertainty in pkCIV 129- 134 F6.1 km/s FWHMMgII [1319/8537]?=-99 Mg II Full-Width at Half-Maximum 136- 141 F6.1 km/s E_FWHMMgII [27/1524]?=-99 Upper uncertainty in FWHMMgII 143- 148 F6.1 km/s e_FWHMMgII [36/2017]?=-99 Lower uncertainty in FWHMMgII 150- 155 F6.1 km/s MADMgII [606/6583]?=-99 Mg II mean absolute deviation 157- 162 F6.1 km/s E_MADMgII [22/6428]?=-99 Upper uncertainty in MADMgII 164- 169 F6.1 km/s e_MADMgII [29/3913]?=-99 Lower uncertainty in MADMgII 171- 176 F6.1 km/s sigMgII [761/9644]?=-99 Mg II line dispersion 178- 183 F6.1 km/s E_sigMgII [32/8812]?=-99 Upper uncertainty in sigMgII 185- 190 F6.1 km/s e_sigMgII [42/6210]?=-99 Lower uncertainty in sigMgII 192- 196 F5.1 0.1nm EWMgII [6/93]?=-99 Mg II equivalent width; Angstrom 198- 202 F5.1 0.1nm E_EWMgII [0/37]?=-99 Upper uncertainty in EWMgII 204- 208 F5.1 0.1nm e_EWMgII [0/49]?=-99 Lower uncertainty in EWMgII 210- 216 F7.1 0.1nm pkMgII [7150/12709]?=-99 Mg II observed-frame peak line wavelength; Angstroms 218- 222 F5.1 0.1nm E_pkMgII [0/20]?=-99 Upper uncertainty in pkMgII 224- 228 F5.1 0.1nm e_pkMgII [0/26]?=-99 Lower uncertainty in pkMgII 230- 234 F5.1 10-7W logL1350 [45.7/47.5]?=-99 Log 1350A luminosity; erg/s 236- 240 F5.1 10-7W logL3000 [46.2/47.2]?=-99 Log 3000A luminosity; erg/s -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [SDSS] 6- 24 A19 --- SDSS SDSS DR16 object designation (JHHMMSS.ss+DDMMSS.s) 26- 30 F5.2 [Msun] MHbFWHM [8/10.1] Log black hole mass from Hβ Full-Width at Half-Maximum 32- 35 F4.2 [Msun] MCIVMAD [1/9.8] Log black hole mass from CIV mean absolute deviation 37- 41 F5.2 [Msun] MCIVsig [7.6/10.2] Log black hole mass from CIV line dispersion 43- 48 F6.2 [Msun] MCIVVPO6 [8.2/10.6]?=-99 Log black hole mass from Vestergaard & Peterson 2006ApJ...641..689V 2006ApJ...641..689V 50- 55 F6.2 [Msun] MCIVP17 [8/10.1]?=-99 Log black hole mass from Park+ 2017ApJ...839...93P 2017ApJ...839...93P 57- 62 F6.2 [Msun] MCIVC17 [5/10.9]?=-99 Log black hole mass from Coatman+ 2017, J/MNRAS/465/2120 64- 69 F6.2 [Msun] MCIVFWHM [7/10.3]?=-99 Log black hole mass from CIV Full-Width at Half-Maximum 71- 76 F6.2 [Msun] MMgIIMAD [7.2/10.5]?=-99 Log black hole mass from MgII mean absolute deviation 78- 83 F6.2 [Msun] MMgIIsig [8.2/10.4]?=-99 Log black hole mass from MgII line dispersion 85- 90 F6.2 [Msun] MMgIIVO09 [8.3/10]?=-99 Log black hole mass from Vestergaard & Osmer 2009, J/ApJ/699/800 92- 97 F6.2 [Msun] MMgIIZ15 [8.5/10.2]?=-99 Log black hole mass from Zuo+ 2015ApJ...799..189Z 2015ApJ...799..189Z 99- 104 F6.2 [Msun] MMgIIL20 [8.4/10.2]?=-99 Log black hole mass from Le+ 2020ApJ...901...35L 2020ApJ...901...35L 106- 111 F6.2 [Msun] MFWHMw [8.4/10.1]?=-99 Log black hole mass with CIV Full-Width at Half-Maximum 113- 118 F6.2 [Msun] MFWHMwo [8.4/10.2]?=-99 Log black hole mass without CIV Full-Width at Half-Maximum 120- 125 F6.2 [Msun] MMADw [8.4/10.3]?=-99 Log black hole mass with CIV mean absolute deviation 127- 132 F6.2 [Msun] MMADwo [8.5/10.5]?=-99 Log black hole mass without CIV mean absolute deviation 134- 139 F6.2 [Msun] Msigw [8.4/10.4]?=-99 Log black hole mass with CIV line dispersion 141- 146 F6.2 [Msun] Msigwo [8.4/10.5]?=-99 Log black hole mass without CIV line dispersion -------------------------------------------------------------------------------- History: From electronic version of the journal References: Matthews et al. 2021ApJS..252...15M 2021ApJS..252...15M Cat. J/ApJS/252/15 Matthews et al. Paper I. 2023ApJ...950...95M 2023ApJ...950...95M Cat. J/ApJ/950/95 Dix et al. Paper II. 2023ApJ...950...96D 2023ApJ...950...96D This catalog Ahmed et al. 2024ApJ...968...77A 2024ApJ...968...77A
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 31-Jul-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line