J/ApJ/951/133   Spectral energy distributions of Fermi blazars   (Kerby+, 2023)

Testing the blazar sequence with spectra of recently discovered dim blazars from the Fermi unassociated catalog. Kerby S., Falcone A.D. <Astrophys. J., 951, 133 (2023)> =2023ApJ...951..133K 2023ApJ...951..133K
ADC_Keywords: BL Lac objects; Active gal. nuclei; Gamma rays; X-ray sources; Radio sources; Energy distributions Keywords: Blazars ; Catalogs Abstract: Recent works have developed samples of blazars from among the Fermi Large Area Telescope unassociated sources via machine-learning comparisons with known blazar samples. Continued analysis of these new blazars tests the predictions of the blazar sequence and enables more flux-complete samples of blazars as a population. Using Fermi, Swift, Wide-field Infrared Survey Explorer, and archival radio data, we construct broadband spectral energy distributions for 106 recently identified blazars. Drawn from the unassociated 4FGL source sample, this new sample has a lower median flux than the overall sample of gamma-ray blazars. By measuring the synchrotron peak frequency, we compare our sample of new blazars with known blazars from the 4LAC catalog. We find that the bulk of the new blazars are similar to high-synchrotron-peaked BL Lac objects, with a higher median synchrotron peak; the sample has a median log(νsyn/Hz)=15.5 via BLaST peak estimation, compared to log(νsyn/Hz)=14.2 for the 4LAC BL Lacs. Finally, we conduct synchrotron self-Compton leptonic modeling, comparing fitted physical and phenomenological properties to brighter blazars. We find that the new blazars have smaller characteristic Lorentz factors γboost and fitted magnetic fields B, in agreement with blazar sequence predictions. The new blazars have slightly higher Compton dominance ratios than expected, which may point to alternative emission models for these dim blazars. Our results extend the predictions of the blazar sequence to a sample of dimmer blazars, confirming the broad predictions of that theory. Description: The 106 blazars in Kaur+ 2023, J/ApJ/943/167 are the foundation of the sample used in this work. Building off the Fermi-LAT fluxes (IX/67), we incorporate the Swift-XRT data used in Kerby+ 2021, J/ApJ/923/75 and Kaur+ 2023, J/ApJ/943/167 into each spectrum. Finally, we conduct a position cross-match between the XRT centroids of the likely blazars with the SUMSS (Mauch+ 2003, VIII/81), NVSS (Condon+ 1998, VIII/65), and VLASS (Gordon+ 2021, J/ApJS/255/30) radio surveys. Combining the gamma-ray through radio fluxes, we produce a SED for each source such as that shown in Figure 2. See Section 2. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 81 106 *Phenomological features of the broadband spectral energy distributions (SEDs) from agnpy fitting unless otherwise noted table3.dat 94 106 *Synchrotron-self-Compton fits via agnpy with fixed z=0.34 fig2/* . 106 Individual SED data in ecsv FORMAT -------------------------------------------------------------------------------- Note on table2.dat and table3.dat: We conduct Synchrotron Self-Compton (SSC) modeling of our SEDs using the agnpy modeling package (Nigro+ 2022A&A...660A..18N 2022A&A...660A..18N); see Section 3.2. -------------------------------------------------------------------------------- See also: VIII/65 : 1.4GHz NRAO VLA Sky Survey (NVSS) (Condon+ 1998) VIII/78 : Sydney University Molonglo Sky Survey (SUMSS) (Mauch+ 2006) VIII/81 : Sydney University Molonglo Sky Survey (SUMSS V2.1) (Mauch+ 2008) IX/67 : Fermi LAT 4th source cat. (4FGL-DR3) (Fermi-LAT col., 2022) J/ApJ/722/520 : Gamma-ray light curves of Fermi blazars (Abdo+, 2010) J/ApJ/716/30 : SED of Fermi bright blazars (Abdo+, 2010) J/ApJS/247/33 : The Fermi LAT fourth source catalog (4FGL) (Abdollahi+, 2020) J/ApJ/892/105 : 4th catalog of Fermi LAT-detected AGNs (4LAC) (Ajello+, 2020) J/ApJ/923/75 : X-ray/UV/opt counterparts of 4FGL sources (Kerby+, 2021) J/ApJS/255/30 : VLASS QL Ep.1 Catalog, CIRADA version (Gordon+, 2021) J/ApJS/263/24 : The 4LAC-DR3 catalog (Ajello+, 2022) J/ApJ/943/167 : FSRQs & BL Lac objects from 4FGL blazar cand. (Kaur+, 2023) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- 4FGL Fermi-LAT 4FGL DR3 position-based identifier 14- 30 A17 --- XRT Swift-XRT position-based identifier 32- 37 F6.3 [Hz] lognuBLaST [12.2/17.3] Log, synchrotron peak frequency, from BLaST (log(νsyn,BLaST)) (1) 39- 43 F5.3 [Hz] e_lognuBLaST [0.4/2.4] lognuBLaST uncertainty (log(δνsyn,BLaST)) (1) 45- 50 F6.3 [Hz] lognusyn [12.8/18.3] Log, synchrotron peak frequency (log(ν_syn)) 52- 58 F7.3 [mW/m2] lognuFnusyn [-13.7/-9.8] Log, synchrotron peak flux, erg/s/cm2 60- 65 F6.3 [Hz] lognuCom [20.9/25.9] Log, high-energy peak frequency 67- 73 F7.3 [mW/m2] lognuFnuCom [-13.3/-11] Log, high-energy peak flux, erg/s/cm2 75- 81 F7.3 [mW/m2] logFbol [-10.5/-8] Log, bolometric flux, erg/s/cm2 -------------------------------------------------------------------------------- Note (1): BLaST (Glauch+ 2022A&C....4100646G 2022A&C....4100646G) uses machine learning trained on almost 4000 known blazar SEDs to predict the positions of the synchrotron peak frequency, being especially resilient against misreading processes like dust or disk emission as jet synchrotron emission. See Section 3.1. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- 4FGL Fermi-LAT 4FGL DR3 position-based identifier 14- 30 A17 --- XRT Swift-XRT position-based identifier 32- 37 F6.3 [-] logke [-8.9/-0.26] agnpy synchrotron self-Compton (SSC) parameter, scaling factor 39- 44 F6.3 --- p1 [-1.8/4] agnpy SSC parameter, power-law index below break 46- 50 F5.3 --- p2 [1.3/8] agnpy SSC parameter, power-law index above break 52- 56 F5.3 [-] loggam [2/5.6] agnpy SSC parameter, break Lorentz factor 58- 62 F5.3 [-] loggamMax [5/8] agnpy SSC parameter, minimum electron factor 64- 68 F5.3 [-] loggamMin [1/4] agnpy SSC parameter, maximum electron factor 70- 75 F6.3 --- dD [4/41.2] agnpy SSC parameter, Doppler factor, δD 77- 82 F6.3 [G] logB [-2/0.2] agnpy SSC parameter, magnetic field strength 84- 88 F5.3 [s] logtvar [4/6.1] agnpy SSC parameter, variability timescale 90- 94 F5.3 --- chi2r [0.28/4] Reduced χ2 of fit -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 21-Aug-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line