J/ApJ/951/45 Neutrino events in the direction of ICECAT-1 alerts (Abbasi+, 2023)

Constraints on populations of neutrino sources from searches in the directions of IceCube neutrino alerts. Abbasi R., Ackermann M., Adams J., Aggarwal N., Aguilar J.A., Ahlers M., Alameddine J.M., Alves A.A.J., Amin N.M., Andeen K., Anderson T., Anton G., Arguelles C., Ashida Y., Athanasiadou S., Axani S.N., Bai X., A.B. V, Baricevic M., Barwick S.W., Basu V., Bay R., Beatty J.J., Becker K.-H., Tjus J.B., Beise J., Bellenghi C., Benda S., BenZvi S., Berley D., Bernardini E., Besson D.Z., Binder G., Bindig D., Blaufuss E., Blot S., Bontempo F., Book J.Y., Borowka J., Meneguolo C.B., Boser S., Botner O., Bottcher J., Bourbeau E., Braun J., Brinson B., Brostean-Kaiser J., Burley R.T., Busse R.S., Campana M.A., Carnie-Bronca E.G., Chen C., Chen Z., Chirkin D., Choi K., Clark B.A., Classen L., Coleman A., Collin G.H., Connolly A., Conrad J.M., Coppin P., Correa P., Countryman S., Cowen D.F., Cross R., Dappen C., Dave P., De Clercq C., DeLaunay J.J., Delgado Lopez D., Dembinski H., Deoskar K., Desai A., Desiati P., de Vries K.D., de Wasseige G., DeYoung T., Diaz A., Diaz-Velez J.C., Dittmer M., Dujmovic H., DuVernois M.A., Ehrhardt T., Eller P., Engel R., Erpenbeck H., Evans J., Evenson P.A., Fan K.L., Fazely A.R., Fedynitch A., Feigl N., Fiedlschuster S., Fienberg A.T., Finley C., Fischer L., Fox D., Franckowiak A., Friedman E., Fritz A., Furst P., Gaisser T.K., Gallagher J., Ganster E., Garcia A., Garrappa S., Gerhardt L., Ghadimi A., Glaser C., Glauch T., Glusenkamp T., Goehlke N., Gonzalez J.G., Goswami S., Grant D., Gray S.J., Gregoire T., Griswold S., Gunther C., Gutjahr P., Haack C., Hallgren A., Halliday R., Halve L., Halzen F., Hamdaoui H., Minh M.Ha, Hanson K., Hardin J., Harnisch A.A., Hatch P., Haungs A., Helbing K., Hellrung J., Henningsen F., Heuermann L., Hickford S., Hidvegi A., Hill C., Hill G.C., Hoffman K.D., Hoshina K., Hou W., Huber T., Hultqvist K., Hunnefeld M., Hussain R., Hymon K., In S., Iovine N., Ishihara A., Jansson M., Japaridze G.S., Jeong M., Jin M., Jones B.J.P., Kang D., Kang W., Kang X., Kappes A., Kappesser D., Kardum L., Karg T., Karl M., Karle A., Katz U., Kauer M., Kelley J.L., Kheirandish A., Kin K., Kiryluk J., Klein S.R., Kochocki A., Koirala R., Kolanoski H., Kontrimas T., Kopke L., Kopper C., Koskinen D.J., Koundal P., Kovacevich M., Kowalski M., Kozynets T., Krupczak E., Kun E., Kurahashi N., Lad N., Lagunas Gualda C., Larson M.J., Lauber F., Lazar J.P., Lee J.W., Leonard K., Leszczynska A., Lincetto M., Liu Q.R., Liubarska M., Lohfink E., Love C., Mariscal C.J.L., Lu L., Lucarelli F., Ludwig A., Luszczak W., Lyu Y., Ma W.Y., Madsen J., Mahn K.B.M., Makino Y., Mancina S., Sainte W.M., Maris I.C., Marka S., Marka Z., Marsee M., Martinez-Soler I., Maruyama R., McElroy T., McNally F., Mead J.V., Meagher K., Mechbal S., Medina A., Meier M., Meighen-Berger S., Merckx Y., Micallef J., Mockler D., Montaruli T., Moore R.W., Morse R., Moulai M., Mukherjee T., Naab R., Nagai R., Naumann U., Nayerhoda A., Necker J., Neumann M., Niederhausen H., Nisa M.U., Noell A., Nowicki S.C., Pollmann A.O., Oehler M., Oeyen B., Olivas A., Orsoe R., Osborn J., O'Sullivan E., Pandya H., Pankova D.V., Park N., Parker G.K., Paudel E.N., Paul L., de los Heros C.P., Peters L., Peterson J., Philippen S., Pieper S., Pizzuto A., Plum M., Popovych Y., Porcelli A., Prado Rodriguez M., Pries B., Procter-Murphy R., Przybylski G.T., Raab C., Rack-Helleis J., Rameez M., Rawlins K., Rechav Z., Rehman A., Reichherzer P., Renzi G., Resconi E., Reusch S., Rhode W., Richman M., Riedel B., Roberts E.J., Robertson S., Rodan S., Roellinghoff G., Rongen M., Rott C., Ruhe T., Ruohan L., Ryckbosch D., Rysewyk Cantu D., Safa I., Saffer J., Salazar-Gallegos D., Sampathkumar P., Sanchez Herrera S.E., Sandrock A., Santander M., Sarkar S., Sarkar S., Savelberg J., Schaufel M., Schieler H., Schindler S., Schlueter B., Schmidt T., Schneider J., Schroder F.G., Schumacher L., Schwefer G., Sclafani S., Seunarine S., Sharma A., Shefali S., Shimizu N., Silva M., Skrzypek B., Smithers B., Snihur R., Soedingrekso J., Sogaard A., Soldin D., Spannfellner C., Spiczak G.M., Spiering C., Stamatikos M., Stanev T., Stein R., Stezelberger T., Sturwald T., Stuttard T., Sullivan G.W., Taboada I., Ter-Antonyan S., Thompson W.G., Thwaites J., Tilav S., Tollefson K., Tonnis C., Toscano S., Tosi D., Trettin A., Tung C.F., Turcotte R., Twagirayezu J.P., Ty B., Unland Elorrieta M.A., Upshaw K., Valtonen-Mattila N., Vandenbroucke J., van Eijndhoven N., Vannerom D., van Santen J., Vara J., Veitch-Michaelis J., Verpoest S., Veske D., Walck C., Wang W., Watson T.B., Weaver C., Weigel P., Weindl A., Weldert J., Wendt C., Werthebach J., Weyrauch M., Whitehorn N., Wiebusch C.H., Willey N., Williams D.R., Wolf M., Wrede G., Wulff J., Xu X.W., Yanez J.P., Yildizci E., Yoshida S., Yu S., Yuan T., Zhang Z., Zhelnin P., The IceCube Collaboration <Astrophys. J., 951, 45 (2023)> =2023ApJ...951...45A 2023ApJ...951...45A
ADC_Keywords: Neutrino; Transient Keywords: High energy astrophysics ; Neutrino astronomy ; Transient sources Abstract: Beginning in 2016, the IceCube Neutrino Observatory has sent out alerts in real time containing the information of high-energy (E≳100TeV) neutrino candidate events with moderate to high (≳30%) probability of astrophysical origin. In this work, we use a recent catalog of such alert events, which, in addition to events announced in real time, includes events that were identified retroactively and covers the time period of 2011-2020. We also search for additional, lower-energy neutrinos from the arrival directions of these IceCube alerts. We show how performing such an analysis can constrain the contribution of rare populations of cosmic neutrino sources to the diffuse astrophysical neutrino flux. After searching for neutrino emission coincident with these alert events on various timescales, we find no significant evidence of either minute-scale or day-scale transient neutrino emission or of steady neutrino emission in the direction of these alert events. This study also shows how numerous a population of neutrino sources has to be to account for the complete astrophysical neutrino flux. Assuming that sources have the same luminosity, an E-2.5 neutrino spectrum, and number densities that follow star formation rates, the population of sources has to be more numerous than 7x10-9Mpc-3. This number changes to 3x10-7Mpc-3 if number densities instead have no cosmic evolution. Description: The IceCube Neutrino Observatory is a gigaton-scale Cherenkov detector embedded in the ice at the geographic South Pole. The detector consists of 5160 digital optical modules (DOMs) dispersed on 86 "strings" arrayed in a hexagonal grid and deployed at depths of 1450-2450m beneath the ice surface. Although sensitive to all flavors of neutrino interactions, this study relies only on muon track events from muon-neutrino charged current interactions, as well as a 10% contribution from muonic tau decays from charged current tau-neutrino interactions. These "track" events enable a better angular resolution than the other event type, "cascades", at the cost of a poorer energy resolution. The analysis presented here leverages the strengths of two different IceCube data streams: the alert event stream and the "gamma-ray followup" (GFU) stream (see Aartsen+ 2016JInst..1111009I 2016JInst..1111009I). In addition to events detected in real time after the creation of the alert selection criteria, archival IceCube data dating back to 2011 have been processed with the same sets of cuts used for the alert and GFU streams. Overall, our data sets span 2011 May 13 to 2020 Dec 31, and the final alert stream has 275 events and the GFU selection has 1.8x106 events from this period. The 275 alert stream events are the same as the list published in Abbasi+ (2023, J/ApJS/269/25), where all events are included. See Section 2 for further explanations. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table3.dat 98 275 Results from the individual skymap analyses for each of the time windows analyzed -------------------------------------------------------------------------------- See also: J/MNRAS/448/2210 : Swift follow-up of IceCube triggers (Evans+, 2015) J/A+A/650/A83 : Radio flux densities of neutrino associations (Hovatta+, 2021) J/ApJ/918/78 : Neutrinos in coincidence with GWs from LIGO/Virgo (Abe+, 2021) J/ApJ/920/L45 : Catalog of neutrino emissions (Abbasi+, 2021) J/ApJ/934/180 : IceCube's neutrinos with 4FGL, 2SXPS + CRATES (Kun+, 2022) J/ApJS/269/25 : IceCube Event Cat. of Alert Tracks (ICECAT-1) (Abbasi+, 2023) J/A+A/690/A111 : IceCube neutrinos-blazars association (Kouch+, 2024) Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- Run [118178/134818] Run identifier 8- 15 I8 --- Event [81419/84363835] Event identifier 17- 22 F6.2 deg RAdeg Best fit right Ascension (J2000) (1) 24- 29 F6.2 deg DEdeg [-86.1/84.6] Best fit declination (J2000) (1) 31- 38 F8.2 d MJD [55695/59205.1] Modified Julian Date 40- 43 F4.2 [-] logp500 [0/3.3]? Pre-trial p-value for ±500s time window case 44- 48 A5 --- f_logp500 Flag on logp500 (2) 50- 53 F4.2 [-] logp1 [0/2.2]? Pre-trial p-value for ±1d time window case 54- 58 A5 --- f_logp1 Flag on logp1 (2) 60- 65 F6.2 deg RAStdeg ? Right Ascension (J2000) (RAsteady) (3) 67- 72 F6.2 deg DEStdeg [-86/82.6]? Declination (J2000) (DEsteady) (3) 74- 78 F5.2 --- TS [0/17]? Analysis test statistic; time-integrated analysis 80- 83 F4.1 --- ns [1.6/82]? Best-fit Number of signal neutrino events; time-integrated analysis 85- 88 F4.2 --- gamma [1.3/5]? Best-fit Spectral index; time-integrated analysis 90- 93 F4.2 [-] logpSt [0/2.8]? Pre-trial p-value for time-integrated case (--log10(psteady)) 94- 98 A5 --- f_logpSt Flag on logSt, ns, and gamma (2) -------------------------------------------------------------------------------- Note (1): The best-fit position from the alert event skymap. Note (2): Flag as follows: Excl. = Alert excluded from the analysis for reasons described in the text. Note (3): For the location which yielded the largest test statistic (TS) for the time-integrated analysis. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 21-Aug-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line