J/ApJ/954/55  Abundances of member stars of the Sextans dSph  (Roederer+, 2023)

Abundance analysis of stars at large radius in the Sextans dwarf spheroidal galaxy. Roederer I.U., Pace A.B., Placco V.M., Caldwell N., Koposov S.E., Mateo M., Olszewski E.W., Walker M.G. <Astrophys. J. 954, 55 (2023)> =2023ApJ...954...55R 2023ApJ...954...55R (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, dwarf; Spectra, optical; Abundances; Equivalent widths; Reddening Keywords: Dwarf spheroidal galaxies; Nucleosynthesis; Stellar abundances Abstract: We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5-10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with -3.34≤[Fe/H]≤-2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (-0.34≤[C/Fe]≤+0.36), mild enhancement of the α elements Mg, Si, Ca, and Ti ([α/Fe]=+0.12±0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe]>+1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe]=-2.37±0.25, [Ba/Fe]=-1.45±0.20, [Eu/Fe]<+0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17≤[Eu/Fe]≤+0.70), and the abundance ratios among 12 neutron-capture elements are indicative of r-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba]=+1.21±0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius in Sextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra- faint dwarf galaxies. Description: Our targets were selected as confirmed members in radial velocity surveys (Pace+ 2023, in preparation) or from a proper-motion-based selection (Pace+ 2022ApJ...940..136P 2022ApJ...940..136P) using Gaia's EDR3. See Section 2.1. We used the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Landon Clay (Magellan II) Telescope at Las Campanas Observatory, Chile, to collect high-resolution spectra of seven stars in Sextans. These spectra were obtained on several nights in 2021 and 2022, with a spectral resolving power of R∼41000 on the blue spectrograph (3350<λ<5000Å) and R∼36000 on the red spectrograph (5000<λ<9150Å). Objects: -------------------------------------------------------------------- RA (ICRS) DE Designation(s) -------------------------------------------------------------------- 10 13 02.89 -01 36 53.0 Sextans = NAME Sextans Dwarf Spheroidal -------------------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 127 7 Star names, coordinates, photometry, and reddening table4.dat 133 351 Line atomic data and derived abundances -------------------------------------------------------------------------------- See also: I/350 : Gaia EDR3 (Gaia Collaboration, 2020) V/154 : Sloan Digital Sky Surveys (SDSS), Release 16 (DR16) (Ahumada+, 2020) I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) J/AJ/90/2221 : UMi dwarf galaxy BV photometry (Olszewski+, 1985) J/A+A/416/1117 : Abundances in the early Galaxy (Cayrel+, 2004) J/A+A/435/373 : Broadening of Fe II lines by H collisions (Barklem+, 2005) J/AJ/131/375 : Phot. and velocities of Sculptor dSph giants (Westfall+, 2006) J/ApJS/162/227 : Transition probabilities for SmII (Lawler+, 2006) J/ApJ/667/1267 : CrI transition probabilities (Sobeck+, 2007) J/ApJ/681/1524 : Detailed abundances for 28 metal-poor stars (Lai+, 2008) J/AJ/137/3100 : Radial velocities of 4 dSph galaxies (Walker+, 2009) J/ApJS/182/51 : Transition prob. of rare earth elements (Lawler+, 2009) J/ApJS/182/80 : Rare earth abundances (Sneden+, 2009) J/A+A/503/541 : Li in late-type stars non-LTE calculations (Lind+, 2009) J/A+A/522/A26 : Fe Abundances in metal-poor stars (Sbordone+ 2010) J/ApJ/724/341 : Nucleosynthesis of massive metal-free stars (Heger+, 2010) J/ApJ/724/975 : Heavy elements abund. of metal-poor stars (Roederer+, 2010) J/MNRAS/411/1013 : CaII triplet in Sextans dSph galaxy (Battaglia+, 2011) J/ApJS/194/35 : Atomic transition probabilities of Mn (Den Hartog+, 2011) J/ApJ/750/76 : r-process peaks elements in HD 160617 (Roederer+, 2012) J/ApJ/769/57 : Equivalent widths of metal-poor stars (Frebel+, 2013) J/ApJS/211/20 : NiI transition probability measurements (Wood+, 2014) J/AJ/147/136 : Stars of very low metal abundance. VI. (Roederer+, 2014) J/MNRAS/441/3127 : FeI oscillator strengths for Gaia-ESO (Ruffoni+, 2014) J/ApJS/215/20 : Vanadium log(gf) and transition probabilities (Lawler+, 2014) J/ApJS/220/13 : Co I transition probabilities (Lawler+, 2015) J/MNRAS/460/30 : gi photometry of Sextans dSph galaxy stars (Roderick+, 2016) J/ApJS/228/10 : Transition prob. for 183 lines of Cr II (Lawler+, 2017) J/A+A/609/A53 : Tracing stars of MW dwarf galaxies: Sextans (Cicuendez+, 2018) J/ApJ/860/125 : Six warm metal-poor stars iron abundances (Roederer+, 2018) J/A+A/616/A12 : Gaia DR2 sources in GC and dSph (Gaia Collaboration+, 2018) J/ApJS/249/30 : R-Process Alliance: metal-poor star sp. (Holmbeck+, 2020) J/A+A/641/A127 : 13 dsph and ultra-faint galaxies analysis (Reichert+, 2020) J/A+A/642/A176 : Chemical evolution of dSph galaxy Sextans (Theler+, 2020) J/ApJ/953/31 : Abund. in warm VMP stars from Keck/HIRES sp. (Sneden+, 2023) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- SNR Signal-to-noise ratio (1) 6- 24 I19 --- GaiaEDR3 Gaia EDR3 identifier 26- 44 A19 --- SDSS SDSS DR13 name (JHHMMSS.ss+DDMMSS.s) 46- 55 A10 --- OID Other identifier (abbreviated name) 57- 58 I2 h RAh Hour of right ascension (J2000) 60- 61 I2 min RAm Minute of right ascension (J2000) 63- 67 F5.2 s RAs Second of right ascension (J2000) 69 A1 --- DE- Sign of declination (J2000) 70- 71 I2 deg DEd Degree of declination (J2000) 73- 74 I2 arcmin DEm Arcminute of declination (J2000) 76- 79 F4.1 arcsec DEs Arcsecond of declination (J2000) 81- 85 F5.2 --- Re/Rh [3.04/10.68] Re to Rh ratio (2) 87- 91 F5.2 mag Gmag [16.75/18.49] Gaia G-band magnitude 93- 97 F5.2 mag gmag [17.86/18.8] SDSS g-band magnitude 99- 103 F5.2 mag Bmag [18.48/19.38] B magnitude (3) 105- 109 F5.2 mag Vmag [17.27/18.27] V magnitude (3) 111- 115 F5.3 mag E(B-V)SF [0.027/0.043] Reddening from dust maps in Schlafly & Finkbeiner (2011ApJ...737..103S 2011ApJ...737..103S) 117 A1 --- l_E(B-V)Na Limit flag on E(B-V)Na 118- 122 F5.3 mag E(B-V)Na [0.01/0.07]? Reddening from the interstellar NaI D absorption 124- 127 F4.2 mag E(B-V) [0.02/0.05]? Adopted reddening -------------------------------------------------------------------------------- Note (1): Star sample as follows: High = Stars with high-S/N observations Low = Stars with low-S/N observations Note (2): We focused on bright and distant (Re/Rh≳3) stars, where Re=(x2+y2/q2)0.5 is the deprojected elliptical radius, and Rh is the Sextans half-light radius. Note (3): The B and V magnitudes are calculated from the SDSS g magnitude using the Population II star transformations of Jordi+ (2006A&A...460..339J 2006A&A...460..339J). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Ion Species 6- 12 F7.2 0.1nm lambda [3907/8807] Wavelength in Angstroms 14- 17 F4.2 eV ExPot [0/6.21] Excitation potential 19- 24 F6.2 [-] loggf [-10.3/0.7] Log of degeneracy times oscillator strength 26- 29 F4.2 [-] e_loggf [0.01/0.3] Mean error on log of degeneracy times oscillator strength 31- 32 I2 --- r_loggf [1/36] Reference for log of degeneracy times oscillator strength (1) 34- 38 F5.1 0.1pm EWJ1008+0001 ? Equivalent width in milli Angstroms for star J1008+0001 40 A1 --- l_logeJ1008+0001 ? Limit on log epsilon abundance for star J1008+0001 42- 46 F5.2 [-] logeJ1008+0001 [-2.5/8.1]? Log epsilon abundance for star J1008+0001 48- 52 F5.2 --- NLTEcJ1008+0001 ? NLTE correction to log epsilon abundance for star J1008+0001 54- 58 F5.1 0.1pm EWJ1010-0220 ? Equivalent width in milli Angstroms for star J1010-0220 60 A1 --- l_logeJ1010-0220 ? Limit on log epsilon abundance for star J1010-0220 62- 66 F5.2 [-] logeJ1010-0220 [-2.3/6.7]? Log epsilon abundance for star J1010-0220 68- 72 F5.2 --- NLTEcJ1010-0220 ? NLTE correction to log epsilon abundance for star J1010-0220 74- 78 F5.1 0.1pm EWJ1015-0238 ? Equivalent width in milli Angstroms for star JJ1015-0238 80 A1 --- l_logeJ1015-0238 ? Limit on log epsilon abundance for star JJ1015-0238 82- 86 F5.2 [-] logeJ1015-0238 [-2.7/6.7]? Log epsilon abundance for star JJ1015-0238 88- 92 F5.2 --- NLTEcJ1015-0238 ? NLTE correction to log epsilon abundance for star JJ1015-0238 94- 98 F5.1 0.1pm EWJ1018-0155 ? Equivalent width in milli Angstroms for star J1018-0155 100 A1 --- l_logeJ1018-0155 ? Limit on log epsilon abundance for star J1018-0155 102- 106 F5.2 [-] logeJ1018-0155 [-2.01/6.8]? Log epsilon abundance for star J1018-0155 108- 112 F5.2 --- NLTEcJ1018-0155 ? NLTE correction to log epsilon abundance for star J1018-0155 114- 118 F5.1 0.1pm EWJ1018-0209 ? Equivalent width in milli Angstroms for star J1018-0209 120 A1 --- l_logeJ1018-0209 ? Limit on log epsilon abundance for star J1018-0209 122- 126 F5.2 [-] logeJ1018-0209 [-2.14/6.9]? Log epsilon abundance for star J1018-0209 128- 133 F6.3 --- NLTEcJ1018-0209 ? NLTE correction to log epsilon abundance for star J1018-0209 -------------------------------------------------------------------------------- Note (1): References for log of degeneracy times oscillator strength -- 1 = Smith+ 1998ApJ...506..405S 1998ApJ...506..405S, using HFS from Kurucz 2011CaJPh..89..417K 2011CaJPh..89..417K 2 = Kramida+ 2020, Version 5.9; http://physics.nist.gov/asd 3 = Pehlivan Rhodin+ 2017A&A...598A.102P 2017A&A...598A.102P 4 = Kramida+ 2020, Version 5.9; http://physics.nist.gov/asd, using HFS from VALD3 (Piskunov+ 1995A&AS..112..525P 1995A&AS..112..525P, Pakhomov+ 2019ARep...63.1010P 2019ARep...63.1010P) 5 = Den Hartog+ 2023ApJS..265...42D 2023ApJS..265...42D 6 = Den Hartog+ 2021ApJS..255...27D 2021ApJS..255...27D 7 = Lawler & Dakin 1989JOSAB...6.1457L 1989JOSAB...6.1457L, using HFS from Kurucz 2011CaJPh..89..417K 2011CaJPh..89..417K 8 = Lawler+ 2013ApJS..205...11L 2013ApJS..205...11L 9 = Pickering+ 2001ApJS..132..403P 2001ApJS..132..403P, using corrections given in Pickering+ 2002ApJS..138..247P 2002ApJS..138..247P 10 = Wood+ 2013ApJS..208...27W 2013ApJS..208...27W 11 = Lawler+ 2014ApJS..215...20L 2014ApJS..215...20L, including HFS 12 = Wood+ 2014ApJS..214...18W 2014ApJS..214...18W, including HFS 13 = Sobeck+ 2007ApJ...667.1267S 2007ApJ...667.1267S 14 = Lawler+ 2017ApJS..228...10L 2017ApJS..228...10L 15 = Den Hartog+ 2011ApJS..194...35D 2011ApJS..194...35D, including HFS 16 = O'Brian+ 1991JOSAB...8.1185O 1991JOSAB...8.1185O 17 = Den Hartog+ 2014ApJS..215...23D 2014ApJS..215...23D 18 = Ruffoni+ 2014MNRAS.441.3127R 2014MNRAS.441.3127R 19 = Belmonte+ 2017ApJ...848..125B 2017ApJ...848..125B 20 = Blackwell+ 1982MNRAS.199...43B 1982MNRAS.199...43B 21 = Melendez & Barbuy 2009A&A...497..611M 2009A&A...497..611M 22 = Den Hartog+ 2019ApJS..243...33D 2019ApJS..243...33D 23 = Lawler+ 2015ApJS..220...13L 2015ApJS..220...13L, including HFS 24 = Wood+ 2014ApJS..211...20W 2014ApJS..211...20W 25 = Roederer & Lawler 2012ApJ...750...76R 2012ApJ...750...76R 26 = Biemont+ 2011MNRAS.414.3350B 2011MNRAS.414.3350B 27 = Ljung+ 2006A&A...456.1181L 2006A&A...456.1181L 28 = Kramida+ Version 5.9; http://physics.nist.gov/asd, using HFS/IS from McWilliam 1998AJ....115.1640M 1998AJ....115.1640M or other sources when available 29 = Lawler+ 2001ApJ...556..452L 2001ApJ...556..452L, using HFS from Ivans+ 2006ApJ...645..613I 2006ApJ...645..613I when available 30 = Lawler+ 2009ApJS..182...51L 2009ApJS..182...51L 31 = Li+ 2007PhyS...76..577L 2007PhyS...76..577L, using HFS from Sneden+ 2009ApJS..182...80S 2009ApJS..182...80S 32 = Den Hartog+ 2003ApJS..148..543D 2003ApJS..148..543D 33 = Lawler+ 2006ApJS..162..227L 2006ApJS..162..227L, using HFS/IS from Roederer+ 2008ApJ...675..723R 2008ApJ...675..723R 34 = Lawler+ 2001ApJ...563.1075L 2001ApJ...563.1075L, using HFS/IS from Ivans+ 2006ApJ...645..613I 2006ApJ...645..613I 35 = Wickliffe+ 2000JQSRT..66..363W 2000JQSRT..66..363W 36 = Biemont+ 2000MNRAS.312..116B 2000MNRAS.312..116B, using HFS/IS from Roederer+ 2012ApJS..203...27R 2012ApJS..203...27R -------------------------------------------------------------------------------- History: From electronic version of the journal License: cc-by
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 04-Nov-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line