J/ApJS/232/19     H2, D2, and HD c3Πu-(v,N) levels     (Liu+, 2017)

H2X 1Σ+g - c3Πu excitation by electron impact: energies, spectra, emission yields, cross-sections, and H(1s) kinetic energy distributions. Liu X., Shemansky D.E., Yoshii J., Liu M.J., Johnson P.V., Malone C.P., Khakoo M.A. <Astrophys. J. Suppl. Ser., 232, 19-19 (2017)> =2017ApJS..232...19L 2017ApJS..232...19L
ADC_Keywords: Atomic physics Keywords: molecular data ; molecular processes Abstract: The c3Πu state of the hydrogen molecule has the second largest triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c3Πu-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c3Πu state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (Ek) distributions of H atoms produced via the predissociation of the c3Πu state, the c3Πu--b3Σu+ dissociative emission by the magnetic dipole and electric quadrupole, and the c3Πu-a3Σg+-b3Σu+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c3Πu+ and c3Πu- states both produce H(1s) atoms with an average Ek of ∼4.1eV/atom, while the c3Πu--b3Σu+ dissociative emissions by the magnetic dipole and electric quadrupole give an average Ek of ∼1.0 and ∼0.8eV/atom, respectively. The c3Πu-a3Σg+-b3Σu+ cascade and dissociative emission gives an average Ek of ∼1.3 eV/atom. On average, each H2 excited to the c3Πu state in an H2-dominated atmosphere deposits ∼7.1eV into the atmosphere while each H2 directly excited to the a3Σg+ and d3Πu states contribute ∼2.3 and ∼3.3eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X1Σg+-c3Πu excitation is significantly different from that of direct a3Σg+ or d3Πu excitations. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . this file table4.dat 33 1333 Non-adiabatic transition energies and vibrational overlap integrals of the X1Σg+(vi,Ni)-c3Πu(vj,Nj) table5.dat 53 4649 Energies, transition frequencies, transition probabilities and Franck-Condon Factors of the H2 a3Σg+-c3Πu- band systems table7.dat 44 257 Predissociation rates, kinetic energy release, and FCFs of the c3Πu+(v,N) levels table8.dat 36 105 Predissociation rates of the c3Πu- (v,N,J) levels table9.dat 155 33 Calculated energies of the v=0-10 and N=1-15 levels for the H2, HD, and D2 c3Πu- state -------------------------------------------------------------------------------- See also: J/ApJ/818/120 : H2 d3Πu excitation by electron impact (Liu+, 2016) Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- vj [0/21] The X vibrational state 4- 5 I2 --- Nj [1/17] The X rotational state 7- 7 I1 --- vi [0] The c vibrational state 9- 10 I2 --- Ni [0/15] The c rotational state 12- 20 F9.2 cm-1 Eij [87724/118377] Transition energy 22- 33 E12.5 --- VOI [-0.5/0.5] Vibrational Overlap Integral (1) -------------------------------------------------------------------------------- Note (1): The rotationally dependent FCF equals to the square of vibrational overlap integral, |<vi,Ni|vj,Nj>|2. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- N1 [1/15] Upper rotational level 4- 5 I2 --- N0 [1/15] Lower rotational level 7- 8 I2 --- v1 [0/21] Upper vibrational state 10- 11 I2 --- v0 [0/20] Lower vibrational state 13- 21 F9.2 cm-1 Elow [94941/118377] Lower state energy 23- 31 F9.2 cm-1 Ea-Ec [-23233.5/23432.2] Transition frequency (1) 33- 42 E10.4 s-1 A [/94299] Transition probability (2) 44- 53 E10.4 --- FCF [/1] Franck-Condon factor (FCF=|<v1,N1|v0,N0>|2) -------------------------------------------------------------------------------- Note (1): The transition frequency is always defined as the energy difference between the a3Σg+ and c3Πu- states. Note (2): A is positive even when the transition frequency is negative. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- v [0/21] The v vibrational state 4- 5 I2 --- N [1/15] The N rotational level 7- 15 E9.3 cm-1 Width [0.0004/3.5] Predissociation width 17- 25 E9.3 s-1 Rate Predissociation rate 27- 34 F8.5 eV Ek [7.2/10.2] Kenetic energy 36- 44 E9.3 --- FCF Franck-Condon factor in units of 1/hartree; FCF=|<c,v,N|b,Ek,N>|2 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 1 I1 --- v [0/6] The v vibrational state 3- 4 I2 --- N [1/15] The N rotational level 6- 11 F6.1 s-1 F1 [3/2447] F1 fine structure predissociation rate 13- 20 F8.1 s-1 F2 [243/270505] F2 fine structure predissociation rate 22- 27 F6.1 s-1 F3 [2/1073]? F3 fine structure predissociation rate 29- 36 F8.1 s-1 Avg Average predissociation rate (1) -------------------------------------------------------------------------------- Note (1): Average predissociation rate of F1, F2, and F3 fine-structure components based on (2J+1) degeneracy. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table9.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- ID Calculation identifier (1) 4- 5 I2 --- v [0/10] The v vibrational state 7- 15 F9.2 cm-1 Eng-N1 [94941/113080] Calculated energy for N=1 rotational level 17- 25 F9.2 cm-1 Eng-N2 Calculated energy for N=2 rotational level 27- 35 F9.2 cm-1 Eng-N3 Calculated energy for N=3 rotational level 37- 45 F9.2 cm-1 Eng-N4 Calculated energy for N=4 rotational level 47- 55 F9.2 cm-1 Eng-N5 Calculated energy for N=5 rotational level 57- 65 F9.2 cm-1 Eng-N6 Calculated energy for N=6 rotational level 67- 75 F9.2 cm-1 Eng-N7 Calculated energy for N=7 rotational level 77- 85 F9.2 cm-1 Eng-N8 Calculated energy for N=8 rotational level 87- 95 F9.2 cm-1 Eng-N9 Calculated energy for N=9 rotational level 97-105 F9.2 cm-1 Eng-N10 Calculated energy for N=10 rotational level 107-115 F9.2 cm-1 Eng-N11 Calculated energy for N=11 rotational level 117-125 F9.2 cm-1 Eng-N12 Calculated energy for N=12 rotational level 127-135 F9.2 cm-1 Eng-N13 Calculated energy for N=13 rotational level 137-145 F9.2 cm-1 Eng-N14 Calculated energy for N=14 rotational level 147-155 F9.2 cm-1 Eng-N15 [98600/116384] Calculated energy for N=15 rotational level -------------------------------------------------------------------------------- Note (1): Identifier as follows: H2 = Calculated H2 triplet c-(v,N) energy with β=-0.055. HD = Calculated HD triplet c-(v,N) energy with β=-0.055. D2 = Calculated D2 triplet c-(v,N) energy with β=-0.055. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 17-Nov-2017
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line