J/ApJS/232/19 H2, D2, and HD c3Πu-(v,N) levels (Liu+, 2017)
H2X 1Σ+g - c3Πu excitation by electron impact: energies,
spectra, emission yields, cross-sections, and H(1s) kinetic energy
distributions.
Liu X., Shemansky D.E., Yoshii J., Liu M.J., Johnson P.V., Malone C.P.,
Khakoo M.A.
<Astrophys. J. Suppl. Ser., 232, 19-19 (2017)>
=2017ApJS..232...19L 2017ApJS..232...19L
ADC_Keywords: Atomic physics
Keywords: molecular data ; molecular processes
Abstract:
The c3Πu state of the hydrogen molecule has the second largest
triplet-state excitation cross-section, and plays an important role in
the heating of the upper thermospheres of outer planets by electron
excitation. Precise energies of the H2, D2, and HD
c3Πu-(v,N) levels are calculated from highly accurate ab
initio potential energy curves that include relativistic, radiative,
and empirical non-adiabatic corrections. The emission yields are
determined from predissociation rates and refined radiative transition
probabilities. The excitation function and excitation cross-section of
the c3Πu state are extracted from previous theoretical
calculations and experimental measurements. The emission cross-section
is determined from the calculated emission yield and the extracted
excitation cross-section. The kinetic energy (Ek) distributions of H
atoms produced via the predissociation of the c3Πu state, the
c3Πu--b3Σu+ dissociative emission by the magnetic
dipole and electric quadrupole, and the
c3Πu-a3Σg+-b3Σu+ cascade dissociative
emission by the electric dipole are obtained. The predissociation of
the c3Πu+ and c3Πu- states both produce H(1s) atoms
with an average Ek of ∼4.1eV/atom, while the
c3Πu--b3Σu+ dissociative emissions by the
magnetic dipole and electric quadrupole give an average Ek of ∼1.0 and
∼0.8eV/atom, respectively. The
c3Πu-a3Σg+-b3Σu+ cascade and
dissociative emission gives an average Ek of ∼1.3 eV/atom. On average,
each H2 excited to the c3Πu state in an H2-dominated
atmosphere deposits ∼7.1eV into the atmosphere while each H2
directly excited to the a3Σg+ and d3Πu states
contribute ∼2.3 and ∼3.3eV, respectively, to the atmosphere. The
spectral distribution of the calculated continuum emission arising
from the X1Σg+-c3Πu excitation is significantly
different from that of direct a3Σg+ or d3Πu
excitations.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . this file
table4.dat 33 1333 Non-adiabatic transition energies and vibrational
overlap integrals of the
X1Σg+(vi,Ni)-c3Πu(vj,Nj)
table5.dat 53 4649 Energies, transition frequencies, transition
probabilities and Franck-Condon Factors of the
H2 a3Σg+-c3Πu- band systems
table7.dat 44 257 Predissociation rates, kinetic energy release, and
FCFs of the c3Πu+(v,N) levels
table8.dat 36 105 Predissociation rates of the c3Πu- (v,N,J)
levels
table9.dat 155 33 Calculated energies of the v=0-10 and N=1-15 levels
for the H2, HD, and D2 c3Πu- state
--------------------------------------------------------------------------------
See also:
J/ApJ/818/120 : H2 d3Πu excitation by electron impact (Liu+, 2016)
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- vj [0/21] The X vibrational state
4- 5 I2 --- Nj [1/17] The X rotational state
7- 7 I1 --- vi [0] The c vibrational state
9- 10 I2 --- Ni [0/15] The c rotational state
12- 20 F9.2 cm-1 Eij [87724/118377] Transition energy
22- 33 E12.5 --- VOI [-0.5/0.5] Vibrational Overlap Integral (1)
--------------------------------------------------------------------------------
Note (1): The rotationally dependent FCF equals to the square of vibrational
overlap integral, |<vi,Ni|vj,Nj>|2.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- N1 [1/15] Upper rotational level
4- 5 I2 --- N0 [1/15] Lower rotational level
7- 8 I2 --- v1 [0/21] Upper vibrational state
10- 11 I2 --- v0 [0/20] Lower vibrational state
13- 21 F9.2 cm-1 Elow [94941/118377] Lower state energy
23- 31 F9.2 cm-1 Ea-Ec [-23233.5/23432.2] Transition frequency (1)
33- 42 E10.4 s-1 A [/94299] Transition probability (2)
44- 53 E10.4 --- FCF [/1] Franck-Condon factor (FCF=|<v1,N1|v0,N0>|2)
--------------------------------------------------------------------------------
Note (1): The transition frequency is always defined as the energy difference
between the a3Σg+ and c3Πu- states.
Note (2): A is positive even when the transition frequency is negative.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- v [0/21] The v vibrational state
4- 5 I2 --- N [1/15] The N rotational level
7- 15 E9.3 cm-1 Width [0.0004/3.5] Predissociation width
17- 25 E9.3 s-1 Rate Predissociation rate
27- 34 F8.5 eV Ek [7.2/10.2] Kenetic energy
36- 44 E9.3 --- FCF Franck-Condon factor in units of 1/hartree;
FCF=|<c,v,N|b,Ek,N>|2
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 1 I1 --- v [0/6] The v vibrational state
3- 4 I2 --- N [1/15] The N rotational level
6- 11 F6.1 s-1 F1 [3/2447] F1 fine structure predissociation rate
13- 20 F8.1 s-1 F2 [243/270505] F2 fine structure predissociation
rate
22- 27 F6.1 s-1 F3 [2/1073]? F3 fine structure predissociation rate
29- 36 F8.1 s-1 Avg Average predissociation rate (1)
--------------------------------------------------------------------------------
Note (1): Average predissociation rate of F1, F2, and F3 fine-structure
components based on (2J+1) degeneracy.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table9.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 A2 --- ID Calculation identifier (1)
4- 5 I2 --- v [0/10] The v vibrational state
7- 15 F9.2 cm-1 Eng-N1 [94941/113080] Calculated energy
for N=1 rotational level
17- 25 F9.2 cm-1 Eng-N2 Calculated energy for N=2 rotational level
27- 35 F9.2 cm-1 Eng-N3 Calculated energy for N=3 rotational level
37- 45 F9.2 cm-1 Eng-N4 Calculated energy for N=4 rotational level
47- 55 F9.2 cm-1 Eng-N5 Calculated energy for N=5 rotational level
57- 65 F9.2 cm-1 Eng-N6 Calculated energy for N=6 rotational level
67- 75 F9.2 cm-1 Eng-N7 Calculated energy for N=7 rotational level
77- 85 F9.2 cm-1 Eng-N8 Calculated energy for N=8 rotational level
87- 95 F9.2 cm-1 Eng-N9 Calculated energy for N=9 rotational level
97-105 F9.2 cm-1 Eng-N10 Calculated energy for N=10 rotational level
107-115 F9.2 cm-1 Eng-N11 Calculated energy for N=11 rotational level
117-125 F9.2 cm-1 Eng-N12 Calculated energy for N=12 rotational level
127-135 F9.2 cm-1 Eng-N13 Calculated energy for N=13 rotational level
137-145 F9.2 cm-1 Eng-N14 Calculated energy for N=14 rotational level
147-155 F9.2 cm-1 Eng-N15 [98600/116384] Calculated energy
for N=15 rotational level
--------------------------------------------------------------------------------
Note (1): Identifier as follows:
H2 = Calculated H2 triplet c-(v,N) energy with β=-0.055.
HD = Calculated HD triplet c-(v,N) energy with β=-0.055.
D2 = Calculated D2 triplet c-(v,N) energy with β=-0.055.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 17-Nov-2017