J/ApJS/254/14 Planck Cold Clumps in the lambda Orionis complex. III. (Yi+, 2021)

Planck Cold Clumps in the λ Orionis complex. III. A chemical probe of stellar feedback on cores in the λ Orionis cloud. Yi H.-W., Lee J.-E., Kim K.-T., Liu T., Lim B., Tatematsu K. <Astrophys. J. Suppl. ser., 254, 14 (2021)> =2021ApJS..254...14Y 2021ApJS..254...14Y
ADC_Keywords: Molecular clouds; Interstellar medium; Star Forming Region; YSOs; Radio lines; Millimetric/submm sources; Molecular data Keywords: Star formation; Stellar feedback; Interstellar medium; Molecular clouds; Photodissociation regions; H II regions; Chemical abundances Abstract: Massive stars have a strong impact on their local environments. However, how stellar feedback regulates star formation is still under debate. In this context, we studied the chemical properties of 80 dense cores in the Orion molecular cloud complex composed of the Orion A (39 cores), B (26 cores), and λ Orionis (15 cores) clouds using multiple molecular line data taken with the Korean Very Long Baseline Interferometry Network 21m telescopes. The λ Orionis cloud has an HII bubble surrounding the O-type star λ Ori, and hence it is exposed to the ultraviolet (UV) radiation field of the massive star. The abundances of C2H and HCN, which are sensitive to UV radiation, appear to be higher in the cores in the λ Orionis cloud than in those in the Orion A and B clouds, while the HDCO to H2CO abundance ratios show the opposite trend, indicating warmer conditions in the λ Orionis cloud. The detection rates of dense gas tracers such as the N2H+, HCO+, and H13CO+ lines are also lower in the λ Orionis cloud. These chemical properties imply that the cores in the λ Orionis cloud are heated by UV photons from λ Ori. Furthermore, the cores in the λ Orionis cloud do not show any statistically significant excess in the infall signature of HCO+ (1-0), unlike those in the Orion A and B clouds. Our results support the idea that feedback from massive stars impacts star formation in a negative way by heating and evaporating dense materials, as in the λ Orionis cloud. Description: We carried out single-dish observations with the Korean Very Long Baseline Interferometry Network (KVN) 21m telescopes at the Yonsei, Ulsan, and Tamna stations. A multifrequency receiving system is attached to each telescope with the 22, 44, 86, and 129GHz bands. The observations toward 80 cores in the λ Orionis, Orion A, and B clouds were made from 2016 August to 2017 March using several receivers simultaneously. The J=1-0 transitions of five molecules (N2H+, HCO+, H13CO+, C2H, and HCN), including an SiO thermal line (v=0, J=1-0), two masers (CH3OH 70->61 A+ and H2O 616->523), and H2CO (21,2->11,1), H213CO (21,2->11,1), and HDCO (20,2->10,1) lines were observed. From the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Continuum Observations of Pre-protostellar Evolution (SCOPE) project, we obtained the 850um dust continuum emission maps to estimate column densities of H2 molecules toward the 80 cores in our sample. See Section 2.3. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 96 80 Properties of H13CO+, C2H, HCN, and HCO+ lines table3.dat 80 80 Properties of N2H+, HDCO, and H2CO Lines table10.dat 72 80 Spectral line velocities, line asymmetry, and infall rate table12.dat 95 80 Column densities of seven molecules and H2 toward three molecular clouds -------------------------------------------------------------------------------- See also: II/328 : AllWISE Data Release (Cutri+ 2013) J/AJ/118/2409 : VRI photometry of λ Ori PMS stars (Dolan+, 1999) J/A+A/357/1001 : The λ-Orionis ring in CO (Lang+ 2000) J/AJ/123/387 : VRI phot. of λ Ori star-forming region (Dolan+, 2002) J/ApJS/155/149 : CH3OH 70-61 A+ maser sources (Kurtz+, 2004) J/AJ/128/805 : Low-mass stars in Cepheus OB2 region (Sicilia-Aguilar+ 2004) J/A+A/426/503 : Cat. of high velocity molecular outflows (Update) (Wu+ 2004) J/ApJ/665/1194 : Dense cores in the Orion A cloud survey (Ikeda+, 2007) J/ApJ/688/1142 : Star formation in W5: Spitzer observations (Koenig+, 2008) J/ApJ/702/1615 : CH3OH maser survey of EGOs (Cyganowski+, 2009) J/ApJ/722/1226 : IR photometry in λ Orionis cluster (Hernandez+, 2010) J/MNRAS/426/2917 : X-rays sources in Trumpler 37 (Getman+, 2012) J/ApJS/202/4 : Planck cold clumps survey in the Orion complex (Liu+, 2012) J/AJ/144/192 : Spitzer survey of Orion A & B. I. YSO cat. (Megeath+, 2012) J/ApJ/756/60 : A 3mm line survey in 37 IR dark clouds (Sanhueza+, 2012) J/A+A/560/A73 : Horsehead H2CO and CH3OH 30m and PdBI maps (Guzman+, 2013) J/ApJ/767/36 : APEX observations of HOPS protostars (Stutz+, 2013) J/MNRAS/443/454 : UBVIHα photometry in NGC 1893 (Lim+, 2014) J/MNRAS/439/2584 : Southern methanol masers at 36 and 44GHz (Voronkov+, 2014) J/A+A/575/A87 : Deuteration in massive star formation (Fontani+, 2015) J/MNRAS/450/1926 : Infall motions in massive star-forming regions (He+, 2015) J/ApJS/224/5 : Herschel Orion Protostar Survey (HOPS): SEDs (Furlan+, 2016) J/A+A/594/A28 : Planck Cat. of Galactic cold clumps (PGCC) (Planck+, 2016) J/ApJ/820/37 : HCO+ & HCN obs. toward PGCCs (Yuan+, 2016) J/ApJ/834/142 : Gould's Belt Distances Survey. II. OMC (Kounkel+, 2017) J/AJ/156/84 : APOGEE-2 survey of Orion Complex. II. (Kounkel+, 2018) J/MNRAS/477/1993 : NGC 1893 stars LSR velocities (Lim+, 2018) J/ApJS/236/51 : PGCCs in lambda Orionis. II. Cores at 850um (Yi+, 2018) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Cloud Cloud identifier 18- 32 A15 --- Core Core identifier 34- 37 F4.2 K Tpeak1 [0.15/1.63]? The H13CO+ peak temperature 39- 43 F5.2 km/s VLSR1 [1.3/13.5]? The H13CO+ Local Standard of Rest velocity 45- 48 F4.2 km/s FWHM1 [0.3/2.4]? The H13CO+ Full-Width at Half Maximum 50- 53 F4.2 K Tpeak2 [0.09/1.1]? The C2H peak temperature 55- 59 F5.2 km/s VLSR2 [1.5/13.7]? The C2H Local Standard of Rest velocity 61- 64 F4.2 km/s FWHM2 [0.04/2.2]? The C2H Full-Width at Half Maximum 66- 69 F4.2 K Tpeak3 [0.1/7.7]? The HCN peak temperature 71- 75 F5.2 km/s VLSR3 [1.6/13.8]? The HCN Local Standard of Rest velocity 77- 80 F4.2 km/s FWHM3 [0.3/4.1]? The HCN Full-Width at Half Maximum 82- 85 F4.2 K Tpeak4 [0.26/4.9]? The HCO+ peak temperature 87- 91 F5.2 km/s VLSR4 [1.2/14.4]? The HCO+ Local Standard of Rest velocity 93- 96 F4.2 km/s FWHM4 [0.19/4]? The HCO+ Full-Width at Half Maximum -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Cloud Cloud identifier 18- 32 A15 --- Core Core identifier 34- 37 F4.2 K Tpeak5 [0.1/2.91]? The N2H+ peak temperature 39- 43 F5.2 km/s VLSR5 [0.3/12.5]? The N2H+ Local Standard of Rest velocity 45- 48 F4.2 km/s FWHM5 [0.2/1.4]? The N2H+ Full-Width at Half Maximum 50- 53 F4.2 K Tpeak6 [0.08/0.6]? The HDCO peak temperature 55- 59 F5.2 km/s VLSR6 [1.4/14.4]? The HDCO Local Standard of Rest velocity 61- 64 F4.2 km/s FWHM6 [0.27/1.5]? The HDCO Full-Width at Half Maximum 66- 69 F4.2 K Tpeak7 [0.13/2.1]? The H2CO peak temperature 71- 75 F5.2 km/s VLSR7 [1.3/13.9]? The H2CO Local Standard of Rest velocity 77- 80 F4.2 km/s FWHM7 [0.4/2.92]? The H2CO Full-Width at Half Maximum -------------------------------------------------------------------------------- Byte-by-byte Description of file: table10.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Cloud Cloud identifier 18- 32 A15 --- Core Core identifier 34- 38 F5.2 km/s Vthick [1.2/14.4]? Peak velocity of an optically thick line 40- 44 F5.2 km/s Vthin [1.3/13.5]? Peak velocity of an optically thin line 46- 49 F4.2 km/s DelVthin [0.3/2.4]? Line width of the optically thin line 51- 57 F7.2 --- deltav [-22/1.1]? The (Vthick-Vthin)/DelVthin value 59- 65 A7 --- Profile Profile line asymmetry type 67- 72 F6.2 10-6Msun/yr dM/dt [2.9/139]? Infall rate -------------------------------------------------------------------------------- Byte-by-byte Description of file: table12.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Cloud Cloud identifier 18- 32 A15 --- Core Core identifier 34- 40 A7 --- YSO Associated YSO 42- 46 F5.2 10+12/cm2 N2H+ [0.37/34.3]? N2H+ column density 48- 53 F6.2 10+12/cm2 HCO+ [0.4/165.2]? HCO+ column density 55- 58 F4.2 10+12/cm2 H13CO+ [0.2/7.9]? H13CO+ column density 60- 65 F6.2 10+12/cm2 HCN [2.6/109.5]? HCN column density 67- 71 F5.2 10+14/cm2 C2H [0.8/31.1]? C2H column density 73- 77 F5.2 10+13/cm2 H2CO [0.28/28.8]? H2CO column density 79- 83 F5.2 10+12/cm2 HDCO [0.38/11.6]? HDCO column density 85- 89 F5.2 10+22/cm2 H230 [0.2/28.4] H2 column density over 30 arcsec (1) 91- 95 F5.2 10+22/cm2 H220 [1.2/51.8] H2 column density over 20 arcsec (2) -------------------------------------------------------------------------------- Note (1): The 850 micron dust continuum maps were smoothed to calculate the abundance ratios of N2H+, HCO+, H13CO+, HCN, and C2H molecules. Note (2): The 850 micron dust continuum maps were smoothed to calculate the abundance ratios of H2CO and HDCO molecules. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Liu et al. Paper I. 2016ApJS..222....7L 2016ApJS..222....7L Yi et al. Paper II. 2018ApJS..236...51Y 2018ApJS..236...51Y Cat. J/ApJS/236/51
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 07-Jul-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line