J/ApJS/257/3 MAPS III. Radial chemical substructures toward 5 stars (Law+, 2021)

Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of radial chemical substructures. Law C.J., Loomis R.A., Teague R., Oberg K.I., Czekala I., Andrews S.M., Huang J., Aikawa Y., Alarcon F., Bae J., Bergin E.A., Bergner J.B., Boehler Y., Booth A.S., Bosman A.D., Calahan J.K., Cataldi G., Cleeves L.I., Furuya K., Guzman V.V., Ilee J.D., Le Gal R., Liu Y., Long F., Menard F., Nomura H., Qi C., Schwarz K.R., Sierra A., Tsukagoshi T., Yamato Y., van 't Hoff M.L.R., Walsh C., Wilner D.J., Zhang K. <Astrophys. J. Suppl. Ser., 257, 3 (2021)> =2021ApJS..257....3L 2021ApJS..257....3L
ADC_Keywords: Radio continuum; Molecular data; Interstellar medium; YSOs Keywords: Protoplanetary disks ; Planet formation ; Interstellar molecules ; Astrochemistry ; High angular resolution Abstract: The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high-resolution (∼10-20au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here we present a systematic analysis of chemical substructures in 18 molecular lines toward the MAPS sources: IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. We identify more than 200 chemical substructures, which are found at nearly all radii where line emission is detected. A wide diversity of radial morphologies-including rings, gaps, and plateaus-is observed both within each disk and across the MAPS sample. This diversity in line emission profiles is also present in the innermost 50 au. Overall, this suggests that planets form in varied chemical environments both across disks and at different radii within the same disk. Interior to 150 au, the majority of chemical substructures across the MAPS disks are spatially coincident with substructures in the millimeter continuum, indicative of physical and chemical links between the disk midplane and warm, elevated molecular emission layers. Some chemical substructures in the inner disk and most chemical substructures exterior to 150 au cannot be directly linked to dust substructure, however, which indicates that there are also other causes of chemical substructures, such as snowlines, gradients in UV photon fluxes, ionization, and radially varying elemental ratios. This implies that chemical substructures could be developed into powerful probes of different disk characteristics, in addition to influencing the environments within which planets assemble. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement. Description: The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program (2018.1.01055.L) targeted the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 in four spectral setups in ALMA Bands 6 (211-275GHz) and 3 (84-116GHz). The analysis presented here is based on the fiducial images, as described in Oberg+ (2021ApJS..257....1O 2021ApJS..257....1O), which have 0.15" and 0.30" circularized beams for lines in Bands 6 and 3, respectively. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 142 5 *Gas disk sizes table3.dat 82 242 Properties of radial chemical substructures -------------------------------------------------------------------------------- Note on table2.dat: Disk size was computed as the radius that encloses 90% of the total disk flux (see Section 3.5). Note that this is often smaller than the total radial extent of an emission line owing to the presence of diffuse, low flux emission at large radii. -------------------------------------------------------------------------------- See also: J/ApJ/734/98 : DISCS. II. Southern sky disk data (Oberg+, 2011) J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013) J/A+A/600/A20 : Lupus YSOs X-shooter spectroscopy (Alcala+, 2017) J/A+A/605/A21 : H2CO production in HD 163296 (Carney+, 2017) J/A+A/606/A125 : HD163296 DCO+, DCN and N2D+ data cubes (Salinas+, 2017) J/ApJ/845/44 : 340GHz SMA obs. of protoplanetary disks (Tripathi+, 2017) J/ApJ/869/L41 : DSHARP I. Sample, ALMA obs. log & overview (Andrews+, 2018) J/ApJ/859/21 : Lupus protoplanetary disks with ALMA. II. (Ansdell+, 2018) J/ApJ/869/L42 : DSHARP. II. Annular substructures data (Huang+, 2018) J/A+A/622/A75 : MWC 480 ALMA image (Liu+, 2019) J/A+A/631/A69 : Bright C2H emission in Lupus disks (Miotello+ 2019) J/A+A/639/A121 : LkCa15 & 2MASSJ16100501-2132318 ALMa images (Facchini+, 2020) J/A+A/636/A65 : DG Tau B ALMA observations (Garufi+, 2020) J/A+A/642/L7 : IRAS 04302+2247 CO, CS, CN, H2CO, CH3OH maps (Podio+, 2020) J/A+A/642/A164 : Edge-on protoplanetary disks ALMA images (Villenave+, 2020) J/other/NatAs/5.684 : CH3OH in the HD100546 disk (Booth+, 2021) J/A+A/648/A19 : Spiral structure in the gas disc of CQ Tau (Woelfer+, 2021) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Name of the host star 11- 13 I3 au CO2-1 [195/481] Radius of the gas disk for the CO2-1 line 15 I1 au e_CO2-1 [4/6] CO2-1 uncertainty 17- 19 I3 au 13CO2-1 [166/414] Radius of the gas disk for the 13CO2-1 line 21 I1 au e_13CO2-1 [4/6] 13CO2-1 uncertainty 23- 25 I3 au 13CO1-0 [164/405] Radius of the gas disk for the 13CO1-0 line 27- 28 I2 au e_13CO1-0 [8/15] 13CO1-0 uncertainty 30- 32 I3 au C18O2-1 [153/308] Radius of the gas disk for the C18O2-1 line 34 I1 au e_C18O2-1 [4/9] C18O2-1 uncertainty 36- 38 I3 au C18O1-0 [134/335] Radius of the gas disk for the C18O1-0 line 40- 41 I2 au e_C18O1-0 [8/26] C18O1-0 uncertainty 43- 45 I3 au C2H3-2 [102/371] Radius of the gas disk for the C2H3-2 line 47- 48 I2 au e_C2H3-2 [4/14] C2H3-2 uncertainty 50- 52 I3 au C2H1-0 [51/144] Radius of the gas disk for the C2H1-0 line 54- 55 I2 au e_C2H1-0 [10/56] C2H1-0 uncertainty 57- 59 I3 au cC3H2 [100/167]? Radius of the gas disk for the c-C3H27-6 line 61- 62 I2 au e_cC3H2 [5/39]? cC3H2 uncertainty 64- 66 I3 au H2CO3-2 [174/395] Radius of the gas disk for the H2CO3-2 line 68- 69 I2 au e_H2CO3-2 [5/14] H2CO3-2 uncertainty 71- 73 I3 au HCO+1-0 [152/379] Radius of the gas disk for the HCO+1-0 line 75- 76 I2 au e_HCO+1-0 [8/21] HCO+1-0 uncertainty 78- 80 I3 au CS2-1 [107/497] Radius of the gas disk for the CS2-1 line 82- 83 I2 au e_CS2-1 [9/32] CS2-1 uncertainty 85- 87 I3 au HCN3-2 [94/352] Radius of the gas disk for the HCN3-2 line 89 I1 au e_HCN3-2 [4/8] HCN3-2 uncertainty 91- 93 I3 au HCN1-0 [82/524] Radius of the gas disk for the HCN1-0 line 95- 96 I2 au e_HCN1-0 [11/43] HCN1-0 uncertainty 98- 100 I3 au DCN3-2 [48/383] Radius of the gas disk for the DCN3-2 line 102- 103 I2 au e_DCN3-2 [5/24] DCN3-2 uncertainty 105- 106 I2 au HC3N29-28 [69/98]? Radius of the gas disk for the 13CO1-0 line 108- 109 I2 au e_HC3N29-28 [5/25]? HC3N29-28 uncertainty 111- 113 I3 au HC3N11-10 [57/115]? Radius of the gas disk for the HC3N11-10 line 115- 116 I2 au e_HC3N11-10 [9/20]? HC3N11-10 uncertainty 118- 120 I3 au CN1-0 [183/493] Radius of the gas disk for the CN1-0 line 122- 123 I2 au e_CN1-0 [8/27] CN1-0 uncertainty 125- 126 I2 au CH3CN [48/95] Radius of the gas disk for the CH3CN12-11 line 128- 129 I2 au e_CH3CN [4/26] CH3CN uncertainty 131- 133 I3 au c90GHz [56/111] Radius of the gas disk for the 90GHz continuum 135- 136 I2 au e_c90GHz [6/14] c90GHz uncertainty 138- 140 I3 au c260GHz [55/135] Radius of the gas disk for the 260GHz continuum 142 I1 au e_c260GHz [3/5] c260GHz uncertainty -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Host star identifier 11- 24 A14 --- Line Line identifier 26- 29 A4 --- Strct Substructure identifier (1) 31- 33 A3 --- f_Strct Flag on Strct (2) 35 A1 --- f_r0ang Approximate flag on r0ang 36- 41 F6.1 mas r0ang [61.8/4425] Substructure anglular radial location 43- 47 F5.1 mas e_r0ang [0/102.3]? The 1σ uncertainty in r0ang (3) 49 A1 --- f_r0phy Approximate flag on r0phy 50- 54 F5.1 AU r0phy [10/699.1] Substructure physical radial location 56- 60 F5.2 AU e_r0phy [0/16.3]? The 1σ uncertainty in r0phy (3) 62 A1 --- Meth Method used to derive radial locations (4) 64 A1 --- f_Width Approximate or limit flag on Width 65- 67 I3 AU Width [7/292]? Substructure width 69- 72 F4.1 AU e_Width [0.1/56]? The 1σ uncertainty in Width 74- 77 F4.2 --- Depth [0.08/0.98]? Depth of the gap (5) 79- 82 F4.2 --- e_Depth [0.01/0.45]? The 1σ uncertainty in Depth -------------------------------------------------------------------------------- Note (1): B (bright) prefix refers to rings and D (dark) refers to gaps. Note (2): Flag as follows: d = Width of feature is narrower than the FWHM of the synthesized beam (Table 1) and should be considered an upper limit. X = Width of feature results in an unphysical, negative inner radius, i.e., r0-0.5xFWHM<0. a = Fit using the 0.3" tapered radial profile with a ±30° wedge due to the low SNR of these features (see Section 3.3). b = Potentially nonaxisymmetric substructures from spiral arms (see Huang & MAPS team 2021). Note (3): The uncertainties in mas are simply scaled from the fitting procedure and do not account for the uncertainty in the distance to the source. Note (4): Method as follows: G = Gaussian-fitting; R = identification of local extrema in the radial profiles; V = identification through visual inspection. Note (5): Defined as the intensity ratio of adjacent ring-gap pairs (see Section 3.2). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 15-Feb-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line