J/ApJS/257/3 MAPS III. Radial chemical substructures toward 5 stars (Law+, 2021)
Molecules with ALMA at Planet-forming Scales (MAPS).
III. Characteristics of radial chemical substructures.
Law C.J., Loomis R.A., Teague R., Oberg K.I., Czekala I., Andrews S.M.,
Huang J., Aikawa Y., Alarcon F., Bae J., Bergin E.A., Bergner J.B.,
Boehler Y., Booth A.S., Bosman A.D., Calahan J.K., Cataldi G., Cleeves L.I.,
Furuya K., Guzman V.V., Ilee J.D., Le Gal R., Liu Y., Long F., Menard F.,
Nomura H., Qi C., Schwarz K.R., Sierra A., Tsukagoshi T., Yamato Y.,
van 't Hoff M.L.R., Walsh C., Wilner D.J., Zhang K.
<Astrophys. J. Suppl. Ser., 257, 3 (2021)>
=2021ApJS..257....3L 2021ApJS..257....3L
ADC_Keywords: Radio continuum; Molecular data; Interstellar medium; YSOs
Keywords: Protoplanetary disks ; Planet formation ; Interstellar molecules ;
Astrochemistry ; High angular resolution
Abstract:
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program
provides a detailed, high-resolution (∼10-20au) view of molecular line
emission in five protoplanetary disks at spatial scales relevant for
planet formation. Here we present a systematic analysis of chemical
substructures in 18 molecular lines toward the MAPS sources: IM Lup,
GM Aur, AS 209, HD 163296, and MWC 480. We identify more than
200 chemical substructures, which are found at nearly all radii where
line emission is detected. A wide diversity of radial
morphologies-including rings, gaps, and plateaus-is observed both
within each disk and across the MAPS sample. This diversity in line
emission profiles is also present in the innermost 50 au. Overall,
this suggests that planets form in varied chemical environments both
across disks and at different radii within the same disk. Interior to
150 au, the majority of chemical substructures across the MAPS disks
are spatially coincident with substructures in the millimeter
continuum, indicative of physical and chemical links between the disk
midplane and warm, elevated molecular emission layers. Some chemical
substructures in the inner disk and most chemical substructures
exterior to 150 au cannot be directly linked to dust substructure,
however, which indicates that there are also other causes of chemical
substructures, such as snowlines, gradients in UV photon fluxes,
ionization, and radially varying elemental ratios. This implies that
chemical substructures could be developed into powerful probes of
different disk characteristics, in addition to influencing the
environments within which planets assemble. This paper is part of the
MAPS special issue of the Astrophysical Journal Supplement.
Description:
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program
(2018.1.01055.L) targeted the protoplanetary disks around
IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 in four spectral setups
in ALMA Bands 6 (211-275GHz) and 3 (84-116GHz).
The analysis presented here is based on the fiducial images, as
described in Oberg+ (2021ApJS..257....1O 2021ApJS..257....1O), which have 0.15" and 0.30"
circularized beams for lines in Bands 6 and 3, respectively.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 142 5 *Gas disk sizes
table3.dat 82 242 Properties of radial chemical substructures
--------------------------------------------------------------------------------
Note on table2.dat: Disk size was computed as the radius that encloses 90% of
the total disk flux (see Section 3.5). Note that this is often smaller
than the total radial extent of an emission line owing to the presence
of diffuse, low flux emission at large radii.
--------------------------------------------------------------------------------
See also:
J/ApJ/734/98 : DISCS. II. Southern sky disk data (Oberg+, 2011)
J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013)
J/A+A/600/A20 : Lupus YSOs X-shooter spectroscopy (Alcala+, 2017)
J/A+A/605/A21 : H2CO production in HD 163296 (Carney+, 2017)
J/A+A/606/A125 : HD163296 DCO+, DCN and N2D+ data cubes (Salinas+, 2017)
J/ApJ/845/44 : 340GHz SMA obs. of protoplanetary disks (Tripathi+, 2017)
J/ApJ/869/L41 : DSHARP I. Sample, ALMA obs. log & overview (Andrews+, 2018)
J/ApJ/859/21 : Lupus protoplanetary disks with ALMA. II. (Ansdell+, 2018)
J/ApJ/869/L42 : DSHARP. II. Annular substructures data (Huang+, 2018)
J/A+A/622/A75 : MWC 480 ALMA image (Liu+, 2019)
J/A+A/631/A69 : Bright C2H emission in Lupus disks (Miotello+ 2019)
J/A+A/639/A121 : LkCa15 & 2MASSJ16100501-2132318 ALMa images (Facchini+, 2020)
J/A+A/636/A65 : DG Tau B ALMA observations (Garufi+, 2020)
J/A+A/642/L7 : IRAS 04302+2247 CO, CS, CN, H2CO, CH3OH maps (Podio+, 2020)
J/A+A/642/A164 : Edge-on protoplanetary disks ALMA images (Villenave+, 2020)
J/other/NatAs/5.684 : CH3OH in the HD100546 disk (Booth+, 2021)
J/A+A/648/A19 : Spiral structure in the gas disc of CQ Tau (Woelfer+, 2021)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Name Name of the host star
11- 13 I3 au CO2-1 [195/481] Radius of the gas disk for the
CO2-1 line
15 I1 au e_CO2-1 [4/6] CO2-1 uncertainty
17- 19 I3 au 13CO2-1 [166/414] Radius of the gas disk for the
13CO2-1 line
21 I1 au e_13CO2-1 [4/6] 13CO2-1 uncertainty
23- 25 I3 au 13CO1-0 [164/405] Radius of the gas disk for the
13CO1-0 line
27- 28 I2 au e_13CO1-0 [8/15] 13CO1-0 uncertainty
30- 32 I3 au C18O2-1 [153/308] Radius of the gas disk for the
C18O2-1 line
34 I1 au e_C18O2-1 [4/9] C18O2-1 uncertainty
36- 38 I3 au C18O1-0 [134/335] Radius of the gas disk for the
C18O1-0 line
40- 41 I2 au e_C18O1-0 [8/26] C18O1-0 uncertainty
43- 45 I3 au C2H3-2 [102/371] Radius of the gas disk for the
C2H3-2 line
47- 48 I2 au e_C2H3-2 [4/14] C2H3-2 uncertainty
50- 52 I3 au C2H1-0 [51/144] Radius of the gas disk for the
C2H1-0 line
54- 55 I2 au e_C2H1-0 [10/56] C2H1-0 uncertainty
57- 59 I3 au cC3H2 [100/167]? Radius of the gas disk for the
c-C3H27-6 line
61- 62 I2 au e_cC3H2 [5/39]? cC3H2 uncertainty
64- 66 I3 au H2CO3-2 [174/395] Radius of the gas disk for the
H2CO3-2 line
68- 69 I2 au e_H2CO3-2 [5/14] H2CO3-2 uncertainty
71- 73 I3 au HCO+1-0 [152/379] Radius of the gas disk for the
HCO+1-0 line
75- 76 I2 au e_HCO+1-0 [8/21] HCO+1-0 uncertainty
78- 80 I3 au CS2-1 [107/497] Radius of the gas disk for the
CS2-1 line
82- 83 I2 au e_CS2-1 [9/32] CS2-1 uncertainty
85- 87 I3 au HCN3-2 [94/352] Radius of the gas disk for the
HCN3-2 line
89 I1 au e_HCN3-2 [4/8] HCN3-2 uncertainty
91- 93 I3 au HCN1-0 [82/524] Radius of the gas disk for the
HCN1-0 line
95- 96 I2 au e_HCN1-0 [11/43] HCN1-0 uncertainty
98- 100 I3 au DCN3-2 [48/383] Radius of the gas disk for the
DCN3-2 line
102- 103 I2 au e_DCN3-2 [5/24] DCN3-2 uncertainty
105- 106 I2 au HC3N29-28 [69/98]? Radius of the gas disk for the
13CO1-0 line
108- 109 I2 au e_HC3N29-28 [5/25]? HC3N29-28 uncertainty
111- 113 I3 au HC3N11-10 [57/115]? Radius of the gas disk for the
HC3N11-10 line
115- 116 I2 au e_HC3N11-10 [9/20]? HC3N11-10 uncertainty
118- 120 I3 au CN1-0 [183/493] Radius of the gas disk for the
CN1-0 line
122- 123 I2 au e_CN1-0 [8/27] CN1-0 uncertainty
125- 126 I2 au CH3CN [48/95] Radius of the gas disk for the
CH3CN12-11 line
128- 129 I2 au e_CH3CN [4/26] CH3CN uncertainty
131- 133 I3 au c90GHz [56/111] Radius of the gas disk for the
90GHz continuum
135- 136 I2 au e_c90GHz [6/14] c90GHz uncertainty
138- 140 I3 au c260GHz [55/135] Radius of the gas disk for the
260GHz continuum
142 I1 au e_c260GHz [3/5] c260GHz uncertainty
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Name Host star identifier
11- 24 A14 --- Line Line identifier
26- 29 A4 --- Strct Substructure identifier (1)
31- 33 A3 --- f_Strct Flag on Strct (2)
35 A1 --- f_r0ang Approximate flag on r0ang
36- 41 F6.1 mas r0ang [61.8/4425] Substructure anglular radial location
43- 47 F5.1 mas e_r0ang [0/102.3]? The 1σ uncertainty in r0ang (3)
49 A1 --- f_r0phy Approximate flag on r0phy
50- 54 F5.1 AU r0phy [10/699.1] Substructure physical radial location
56- 60 F5.2 AU e_r0phy [0/16.3]? The 1σ uncertainty in r0phy (3)
62 A1 --- Meth Method used to derive radial locations (4)
64 A1 --- f_Width Approximate or limit flag on Width
65- 67 I3 AU Width [7/292]? Substructure width
69- 72 F4.1 AU e_Width [0.1/56]? The 1σ uncertainty in Width
74- 77 F4.2 --- Depth [0.08/0.98]? Depth of the gap (5)
79- 82 F4.2 --- e_Depth [0.01/0.45]? The 1σ uncertainty in Depth
--------------------------------------------------------------------------------
Note (1): B (bright) prefix refers to rings and D (dark) refers to gaps.
Note (2): Flag as follows:
d = Width of feature is narrower than the FWHM of the synthesized beam
(Table 1) and should be considered an upper limit.
X = Width of feature results in an unphysical, negative inner radius, i.e.,
r0-0.5xFWHM<0.
a = Fit using the 0.3" tapered radial profile with a ±30°
wedge due to the low SNR of these features (see Section 3.3).
b = Potentially nonaxisymmetric substructures from spiral arms
(see Huang & MAPS team 2021).
Note (3): The uncertainties in mas are simply scaled from the fitting procedure
and do not account for the uncertainty in the distance to the source.
Note (4): Method as follows:
G = Gaussian-fitting;
R = identification of local extrema in the radial profiles;
V = identification through visual inspection.
Note (5): Defined as the intensity ratio of adjacent ring-gap pairs
(see Section 3.2).
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 15-Feb-2022