J/ApJS/257/57      Cold molecular gas in merger remnants. II.      (Ueda+, 2021)

Cold molecular gas in merger remnants. II. The properties of dense molecular gas. Ueda J., Iono D., Yun M.S., Michiyama T., Watanabe Y., Snell R.L., Rosa-Gonzalez D., Saito T., Vega O., Yamashita T. <Astrophys. J. Suppl. Ser., 257, 57 (2021)> =2021ApJS..257...57U 2021ApJS..257...57U
ADC_Keywords: Galaxies, spectra; Millimetric/submm sources; Molecular data Keywords: Galaxy mergers ; Extragalactic astronomy ; Galaxy evolution ; Galaxy interactions ; Star formation ; Millimeter astronomy ; Interstellar line emission Abstract: We present the 3mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Sixteen molecular lines from 14 different molecular species and isotopologues were identified, and 21 out of 28 sources were detected in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN(1-0) and HCO+(1-0), to 13CO(1-0) are 3-4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of 13CO and high dense gas fractions suggested by high HCN(1-0)/12CO(1-0) ratios. We calculate the IR-to-HCN(1-0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source ((1.1-6.5)x103L/(K.km/s.pc2)). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2-3 than those of the early/mid-stage mergers and nonmerging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-12CO(1-0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the postmerger phase. Description: Multiline observations toward 28 merger remnants were carried out using the Large Millimeter Telescope (LMT) between 2014 October and 2015 May in its early science phase (frequency range 73-111GHz with a spectral resolution of 31.25MHz). We also used the CO(1-0) data of six sources (Arp 187, AM 0956-282, NGC 3597, AM 1300-233, AM 2055-425, and NGC 7252) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) 12m array and the Atacama Compact Array (ACA: 7m array + Total Power (TP) array) as part of 2011.0.00099.S, 2016.2.00006.S, and 2017.1.01003.S. In addition, we used the CO(1-0) data of NGC 3256 obtained with the ALMA 12m (TM2) array and the ACA 7m array as part of 2016.2.00042.S, 2016.2.00094.S, and 2018.1.00223.S. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 83 28 Merger remnant sub-sample table3.dat 98 194 Properties of molecular lines table4.dat 86 21 Molecular line luminosities -------------------------------------------------------------------------------- See also: J/AJ/114/2381 : UBVI photometry of NGC 7252 (Miller+, 1997) J/ApJS/206/1 : Mid-IR properties of GOALS nearby LIRGs (Stierwalt+, 2013) J/A+A/579/A101 : 3mm molecular line survey of 8 AGN (Aladro+, 2015) J/A+A/628/A71 : CO spectra of 55 LIRGs and ULIRGs (Herrero-Illana+, 2019) J/ApJ/880/127 : EMPIRE: IRAM 30m dense gas survey (Jimenez-Donaire+, 2019) J/A+A/633/A163 : Mrk 231 CO(1-0) and CN(1-0) line observations (Cicone+, 2020) J/A+A/635/A4 : HCN-to-HNC intensity ratio (Hacar+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Source name 13- 14 I2 h RAh Hour of Right Ascension (J2000) 16- 17 I2 min RAm Minute of Right Ascension (J2000) 19- 20 I2 s RAs Second of Right Ascension (J2000) 22- 22 A1 --- DE- Sign of the Declination (J2000) 23- 24 I2 deg DEd Degree of Declination (J2000) 26- 27 I2 arcmin DEm Arcminute of Declination (J2000) 29- 30 I2 arcsec DEs Arcsecond of Declination (J2000) 32- 36 F5.1 Mpc DistL [13.6/181.7] Luminosity distance 38- 40 I3 pc/arcsec Scale [65/810] Scale 42- 46 I5 km/s Vsys [980/12840] Systemic velocity, Rothberg & Joseph (2004AJ....128.2098R 2004AJ....128.2098R) 48- 48 A1 --- l_logLFIR Limit flag on logLFIR 49- 53 F5.2 [Lsun] logLFIR [9.05/12.37] log of FIR luminosity (1) 55- 55 A1 --- l_logLIR Limit flag on logLIR 56- 60 F5.2 [Lsun] logLIR [9.13/12.52] log of IR luminosity (1) 62- 66 F5.2 arcsec RadCO [1.85/36.9] Radius of maximum CO extent (2) 68- 72 F5.2 --- Rratio [0.01/16]? Extent of molecular gas to stellar component (2) 74- 77 F4.2 --- e_Rratio [0.01/3]? Uncertainty in Ratio 79- 83 A5 --- Class Classification ("LIRG": 11 occurrences; "ULIRG": 2 occurrences) -------------------------------------------------------------------------------- Note (1): FIR and IR luminosity estimated using the IRAS catalogs, but the IR luminosities of Arp187, AM1158-333, UGC9829, UGC10675, and NGC7135 are estimated using LIR=1.2*LFIR. This is based on the average LIR/LFIR (1.2±0.1) of our sample except for two AGN-host galaxies. Note (2): The radius enclosing the maximum extent of the CO distribution , and the extent of molecular gas relative to the stellar component are from Ueda+ (2014ApJS..214....1U 2014ApJS..214....1U). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Source name 13- 16 F4.2 mK rms [0.14/0.4] RMS noise level of spectrum 18- 42 A25 --- Line Molecular Line 44- 48 I5 km/s Vlsr [1020/12343]? Central LSR velocity of the molecular line 50- 51 I2 km/s e_Vlsr [1/69]? Uncertainty in Vlsr 53- 53 A1 --- l_TApeak limit flag for TApeak 55- 59 F5.2 mK TApeak [0.45/36.35] Peak antenna temperature 61- 64 F4.2 mK e_TApeak [0.14/0.38]? Uncertainty in TApeak 66- 66 A1 --- f_TApeak a = tentative detection of line 68- 69 I2 --- Nch [2/17] Number, channels with >1.5σ (RMS) 71- 74 I4 km/s dV [166/1382] Linewidth, Nch * velocity channel width 76- 76 A1 --- l_I Limit flag on I 78- 81 F4.2 K.km/s I [0.08/9.7] Integrated line intensity or upper limit 83- 86 F4.2 K.km/s e_I [0.02/0.11]? Uncertainty on I (1) 88- 88 A1 --- l_SdV Limit flag on SdV 90- 94 F5.2 Jy.km/s SdV [0.58/67.2] Integrated flux density or upper limit (2) 96- 98 F3.1 Jy.km/s e_SdV [0.2/0.8]? Uncertainty in SdV (2) -------------------------------------------------------------------------------- Note (1): Errors estimated from e_I = rms * linewidth per channel * square root of the number of channels, or rms*dVch*sqrt(Nch). Note (2): Unit of the integrated flux density, SdV, is converted from antenna temperature to Jansky using a Kelvin-to-Jansky conversion factor of 7Jy.K(TA*)-1. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Source name 13- 13 A1 --- l_LHCN Limit flag on LHCN 15- 21 E7.1 K.km/s.pc2 LHCN [1000000/1500000000] Line luminosity, HCN 23- 29 E7.1 K.km/s.pc2 e_LHCN [3e+06/3e+08]? Uncertainty in LHCN 31- 31 A1 --- l_LHCO+ Limit flag on LHCO+ 33- 39 E7.1 K.km/s.pc2 LHCO+ [1000000/1400000000] Line luminosity, HCO+ 41- 47 E7.1 K.km/s.pc2 e_LHCO+ [5e+06/3e+08]? Uncertainty in LHCO+ 49- 49 A1 --- l_LHNC Limit flag on LHNC 51- 57 E7.1 K.km/s.pc2 LHNC [950000/500000000] Line luminosity, HNC 59- 65 E7.1 K.km/s.pc2 e_LHNC [1e+07/1.1e+08]? Uncertainty in LHNC 67- 67 A1 --- l_LCO Limit flag on LCO 69- 75 E7.1 K.km/s.pc2 LCO [1.1e+07/6.6e+09]? Line luminosity, LCO 77- 83 E7.1 K.km/s.pc2 e_LCO [0/800000000]? Uncertainty in LCO 85- 86 I2 --- Ref ? Reference for LCO (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = This work 2 = Herrero-Illana et al. (2019, J/A+A/628/A71) 3 = Bertram et al. (2006A&A...448...29B 2006A&A...448...29B) 4 = Costagliola et al. (2011A&A...528A..30C 2011A&A...528A..30C) 5 = Garcia-Burillo et al. (2012A&A...539A...8G 2012A&A...539A...8G) 6 = Jutte et al. (2010A&A...509A..19J 2010A&A...509A..19J) 7 = Aladro et al. (2015, J/A+A/579/A101) 8 = Solomon et al. (1997ApJ...478..144S 1997ApJ...478..144S) 9 = Garland et al. (2005ApJ...624..714G 2005ApJ...624..714G) 10 = Zhu et al. (1999AJ....118..145Z 1999AJ....118..145Z) 11 = Sanders et al. (1991ApJ...370..158S 1991ApJ...370..158S) -------------------------------------------------------------------------------- History: From electronic version of the journal References: Ueda et al. Paper I. 2014ApJS..214....1U 2014ApJS..214....1U
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 29-Mar-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line