J/ApJS/259/20 GOLDRUSH. IV. z∼3-7 galaxies (Harikane+, 2022)
GOLDRUSH.
IV. Luminosity functions and clustering revealed with ∼4,000,000 galaxies at
z∼2-7: galaxy-AGN transition, star formation efficiency, and implication for
evolution at z>10.
Harikane Y., Ono Y., Ouchi M., Liu C., Sawicki M., Shibuya T.,
Behroozi P.S., He W., Shimasaku K., Arnouts S., Coupon J., Fujimoto S.,
Gwyn S., Huang J., Inoue A.K., Kashikawa N., Komiyama Y., Matsuoka Y.,
Willott C.J.
<Astrophys. J. Suppl. Ser., 259, 20 (2022)>
=2022ApJS..259...20H 2022ApJS..259...20H
ADC_Keywords: Galaxies, spectra; Redshifts; Magnitudes, absolute; Ultraviolet;
Optical
Keywords: Galaxy evolution ; Galaxy formation ; High-redshift galaxies
Abstract:
We present new measurements of rest-UV luminosity functions and
angular correlation functions from 4,100,221 galaxies at z∼2-7
identified in the Subaru/Hyper Suprime-Cam survey and CFHT Large Area
U-band Survey. The obtained luminosity functions at z∼4-7 cover a very
wide UV luminosity range of ∼0.002-2000LUV* combined with previous
studies, confirming that the dropout luminosity function is a
superposition of the active galactic nucleus (AGN) luminosity function
dominant at MUV≲-24 mag and the galaxy luminosity function dominant
at MUV≳-22 mag, consistent with galaxy fractions based on
1037 spectroscopically identified sources. Galaxy luminosity functions
estimated from the spectroscopic galaxy fractions show the bright-end
excess beyond the Schechter function at ≳2σ levels, possibly
made by inefficient mass quenching, low dust obscuration, and/or
hidden AGN activity. By analyzing the correlation functions at z∼2-6
with HOD models, we find a weak redshift evolution (within 0.3dex) of
the ratio of the star formation rate (SFR) to the dark matter
accretion rate, SFR/(dM/dt)h, indicating the almost constant star
formation efficiency at z∼2-6, as suggested by our earlier work at
z∼4-7. Meanwhile, the ratio gradually increases with decreasing
redshift at z<5 within 0.3dex, which quantitatively reproduces the
cosmic SFR density evolution, suggesting that the redshift evolution
is primarily driven by the increase of the halo number density due to
the structure formation, and the decrease of the accretion rate due to
the cosmic expansion. Extrapolating this calculation to higher
redshifts assuming the constant efficiency suggests a rapid decrease
of the SFR density at z>10 with ∝10-0.5(1+z), which will be
directly tested with the James Webb Space Telescope.
Description:
We use the internal Subaru/HSC S18A data release product taken in the
Hyper Suprime-Cam SSP survey (Aihara+ 2018PASJ...70S...4A 2018PASJ...70S...4A) from
2014 March to 2018 January to obtain deep optical imaging data with
the five broadband filters, g, r, i, z, and y.
We carried out spectroscopic follow-up observations for sources in our
dropout catalogs at z∼4-7 with DEep Imaging Multi-Object Spectrograph
(DEIMOS) on the Keck Telescope on 2018 August 11 (S18B-014,
PI: Y. Ono), AAOmega+2dF on the Anglo-Australian Telescope from
2018 December 31 to 2019 January 3 (A/2018B/03, PI: Y. Ono), and the
Faint Object Camera and Spectrograph (FOCAS) on the Subaru Telescope
on 2019 May 13 (S19A-006, PI: Y. Ono).
In addition, we include results of our observations with the Inamori
Magellan Areal Camera and Spectrograph (IMACS) on the Magellan I Baade
Telescope in 2007-2011 (PI: M. Ouchi). The IMACS observations were
carried out on 2007 November 11-14, 2008 November 29-30, December 1-2,
December 18-20, 2009 October 11-13, 2010 February 8-9, July 9-10, and
2011 January 3-4.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table10.dat 89 1037 Spectroscopically identified galaxies and
AGNs in our dropout samples
--------------------------------------------------------------------------------
See also:
III/88 : Stellar Spectrophotometric Atlas (Gunn+ 1983)
II/284 : COSMOS Multi-Wavelength Photometry Catalog (Capak+, 2007)
VII/286 : SDSS quasar catalog, fourteenth data release (Paris+, 2018)
J/ApJ/519/1 : Lyman-break galaxies at z ≳ 4 (Steidel+, 1999)
J/ApJ/592/728 : Lyman break galaxies at redshift z∼3 (Steidel+, 2003)
J/AJ/127/3553 : JHK phot. & spectroscopy for L & T dwarfs (Knapp+, 2004)
J/ApJS/172/523 : COSMOS field Lyα emitters at z∼5.7 (Murayama+, 2007)
J/ApJS/176/1 : Subaru/XMM-Newton deep survey (SXDS). II. (Furusawa+, 2008)
J/ApJS/176/301 : Subaru/XMM-Newton deep survey IV. (SXDS) (Ouchi+, 2008)
J/ApJ/696/546 : Lyα emitters at z∼4.86 (Shioya+, 2009)
J/ApJ/760/128 : Lya emission from 4<z<6 sources in COSMOS (Mallery+, 2012)
J/ApJ/755/169 : 3<z<5 QSO luminosity function in the COSMOS (Masters+, 2012)
J/ApJ/750/99 : The Pan-STARRS1 photometric system (Tonry+, 2012)
J/A+A/559/A14 : VIMOS VLT Deep Survey final data release (Le Fevre+, 2013)
J/MNRAS/432/2696 : Galaxy luminosity function at z = 7-9 (McLure+, 2013)
J/ApJ/777/18 : Stellar mass functions of galaxies to z=4 (Muzzin+, 2013)
J/ApJ/793/115 : UV-continuum slopes beta for z∼4-8 galaxies (Bouwens+, 2014)
J/MNRAS/440/2810 : Galaxy luminosity function at z ≃ 7 (Bowler+, 2014)
J/ApJ/803/34 : z∼4-10 galaxies from HST legacy fields (Bouwens+, 2015)
J/ApJ/810/71 : UV mag of cand. galaxies at 3~<z~<8.5 (Finkelstein+, 2015)
J/ApJ/814/95 : Star formation rate of 4≲z≲8 galaxies (Finkelstein+, 2015)
J/ApJS/219/15 : Morphologies of z=0-10 gal. with HST data (Shibuya+, 2015)
J/ApJS/227/11 : PS1 z>5.6 quasars follow-up (Banados+, 2016)
J/ApJ/821/123 : Lyman break galaxies in Hubble deep fields (Harikane+, 2016)
J/ApJS/224/24 : The COSMOS2015 catalog (Laigle+, 2016)
J/ApJS/225/27 : 3D-HST Survey: grism spectra master cat. (Momcheva+, 2016)
J/ApJ/826/114 : z∼3-6 protoclusters in CFHTLS deep fields (Toshikawa+, 2016)
J/ApJ/819/24 : z>4.5 QSOs with SDSS and WISE. I. Opt. spectra (Wang+, 2016)
J/MNRAS/472/273 : OzDES DR1 (Childress+, 2017)
J/ApJ/841/111 : C3R2 survey: high-confidence z from DR1 (Masters+, 2017)
J/A+A/600/A110 : VIMOS Ultra Deep Survey (VUDS) DR1 (Tasca+, 2017)
J/ApJ/858/77 : DEIMOS 10K sp. survey in COSMOS field (Hasinger+, 2018)
J/ApJ/854/73 : Full-data results of HFF: galaxies z∼6-9 (Ishigaki+, 2018)
J/PASJ/70/S10 : GOLDRUSH I. UV magnitudes (Ono+, 2018)
J/A+A/620/A51 : WIRCam Ultra Deep Survey photometric catalogs (Pello+, 2018)
J/A+A/643/A4 : ALPINE-ALMA [CII] survey. IR luminosity (Fudamoto+, 2020)
J/AJ/162/47 : UV luminosity in ∼25000 2<z<9 galaxies (Bouwens+, 2021)
J/A+A/647/A150 : VANDELS ESO public sp. survey. DR4 (Garilli+, 2021)
Byte-by-byte Description of file: table10.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- --- [HSC]
5- 18 A14 --- HSC Position-based Object ID (JHHMMSS+DDMMSS)
20- 21 I2 h RAh Hour of Right Ascension (J2000)
23- 24 I2 min RAm Minute of Right Ascension (J2000)
26- 30 F5.2 s RAs Second of Right Ascension (J2000)
32- 32 A1 --- DE- Sign of the Declination (J2000)
33- 34 I2 deg DEd Degree of Declination (J2000)
36- 37 I2 arcmin DEm Arcminute of Declination (J2000)
39- 43 F5.2 arcsec DEs Arcsecond of Declination (J2000)
45- 49 F5.3 --- zsp [3/7.01] Spectroscopic redshift
51- 54 F4.1 mag mag [18.5/26.4] Apparent AB magnitude
56- 60 F5.1 mag UVMag [-27.5/-19.7] Absolute UV magnitude, MUV
62- 62 I1 --- Set [1/4] Dropout sample selected (1)
64- 64 I1 --- OT [1/2] Galaxy/AGN flag (1=galaxy; 2=AGN,
267 occurrences)
66- 89 A24 --- r_zsp Reference for the spectroscopic redshift (2)
--------------------------------------------------------------------------------
Note (1): The dropout sample in which the source is selected as follows:
1 = g dropout;
2 = r dropout;
3 = i dropout;
4 = z dropout.
Note (2): References for spectroscopic redshift as follows:
Banados et al. (2016) = 2016ApJS..227...11B 2016ApJS..227...11B, Cat. J/ApJS/227/11
Cuby et al. (2003) = 2003A&A...405L..19C 2003A&A...405L..19C
CurtisLake et al. (2012) = 2012MNRAS.422.1425C 2012MNRAS.422.1425C
Endsley et al. (2020) = 2021MNRAS.502.6044E 2021MNRAS.502.6044E
Garilli et al. (2021) = 2021A&A...647A.150G 2021A&A...647A.150G, Cat. J/A+A/647/A150
Harikane et al. (2020a) = 2020ApJ...902..117H 2020ApJ...902..117H
Harikane et al. (2020b) = 2020ApJ...896...93H 2020ApJ...896...93H
Hasinger et al. (2018) = 2018ApJ...858...77H 2018ApJ...858...77H, Cat. J/ApJ/858/77
Hu et al. (2016) = 2016ApJ...825L...7H 2016ApJ...825L...7H
Hu et al. (2017) = 2017ApJ...845L..16H 2017ApJ...845L..16H
Jiang et al. (2017) = 2017ApJ...846..134J 2017ApJ...846..134J
Kriek et al. (2015) = 2015ApJS..218...15K 2015ApJS..218...15K
LeFevre et al. (2013) = 2013A&A...559A..14L 2013A&A...559A..14L, Cat. J/A+A/559/A14
Mallery et al. (2012) = 2012ApJ...760..128M 2012ApJ...760..128M, Cat. J/ApJ/760/128
Masters et al. (2012) = 2012ApJ...755..169M 2012ApJ...755..169M, Cat. J/ApJ/755/169
Masters et al. (2017) = 2017ApJ...841..111M 2017ApJ...841..111M, Cat. J/ApJ/841/111
Matsuoka et al. (2016) = 2016ApJ...828...26M 2016ApJ...828...26M
Matsuoka et al. (2018a) = 2018PASJ...70S..35M 2018PASJ...70S..35M
Matsuoka et al. (2018b) = 2018ApJS..237....5M 2018ApJS..237....5M
Matsuoka et al. (2019) = 2019ApJ...883..183M 2019ApJ...883..183M
Momcheva et al. (2016) = 2016ApJS..225...27M 2016ApJS..225...27M, Cat. J/ApJS/225/27
Ono et al. (2018) = 2018PASJ...70S..10O 2018PASJ...70S..10O, Cat. J/PASJ/70/S10
Ono et al. in prep. =
Ouchi et al. (2008) = 2008ApJS..176..301O 2008ApJS..176..301O
Paris et al. (2018) = 2018A&A...613A..51P 2018A&A...613A..51P, Cat. VII/286
Pentericci et al. (2018) = 2018A&A...619A.147P 2018A&A...619A.147P
Saito et al. (2008) = 2008ApJ...675.1076S 2008ApJ...675.1076S
Sawicki et al. in prep. =
Shibuya et al. (2018) = 2018PASJ...70S..15S 2018PASJ...70S..15S
Tasca et al. (2017) = 2017A&A...600A.110T 2017A&A...600A.110T, Cat. J/A+A/600/A110
This work =
Toshikawa et al. (2016) = 2016ApJ...826..114T 2016ApJ...826..114T, Cat. J/ApJ/826/114
Wang et al. (2016) = 2016ApJ...819...24W 2016ApJ...819...24W, Cat. J/ApJ/819/24
Willott et al. (2009) = 2009AJ....137.3541W 2009AJ....137.3541W
Willott et al. (2010b) = 2010AJ....140..546W 2010AJ....140..546W
Willott et al. (2013) = 2013AJ....145....4W 2013AJ....145....4W
Yang et al. (2017) = 2017AJ....153..184Y 2017AJ....153..184Y
Zhang et al. (2020) = 2020ApJ...891..177Z 2020ApJ...891..177Z
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Ono et al. Paper I. 2018PASJ...70S..10O 2018PASJ...70S..10O Cat. J/PASJ/70/S10
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 08-Jun-2022