J/ApJS/260/3   25 hot-Jupiter properties from HST & Spitzer   (Changeat+, 2022)

Five key exoplanet questions answered via the analysis of 25 hot-Jupiter atmospheres in eclipse. Changeat Q., Edwards B., Al-Refaie A.F., Tsiaras A., Skinner J.W., Cho J.Y.K., Yip K.H., Anisman L., Ikoma M., Bieger M.F., Venot O., Shibata S., Waldmann I.P., Tinetti G. <Astrophys. J. Suppl. Ser., 260, 3 (2022)> =2022ApJS..260....3C 2022ApJS..260....3C
ADC_Keywords: Exoplanets; Models, atmosphere; Spectra, infrared Keywords: Exoplanet atmospheres ; Bayesian statistics ; Surveys ; Hubble Space Telescope ; Astronomy data reduction Abstract: Population studies of exoplanets are key to unlocking their statistical properties. So far, the inferred properties have been mostly limited to planetary, orbital, and stellar parameters extracted from, e.g., Kepler, radial velocity, and Gaia data. More recently an increasing number of exoplanet atmospheres have been observed in detail from space and the ground. Generally, however, these atmospheric studies have focused on individual planets, with the exception of a couple of works that have detected the presence of water vapor and clouds in populations of gaseous planets via transmission spectroscopy. Here, using a suite of retrieval tools, we analyze spectroscopic and photometric data of 25 hot Jupiters, obtained with the Hubble and Spitzer Space Telescopes via the eclipse technique. By applying the tools uniformly across the entire set of 25 planets, we extract robust trends in the thermal structure and chemical properties of hot Jupiters not obtained in past studies. With the recent launch of the James Webb Space Telescope and the upcoming missions Twinkle and Ariel, population-based studies of exoplanet atmospheres, such as the one presented here, will be a key approach to understanding planet characteristics, formation, and evolution in our galaxy. Description: Our study encompasses data for 25 hot Jupiters observed in eclipse with the HST-WFC3 G141 grism and Spitzer: CoRoT-1 b, HAT-P-2 b, HAT-P-7 b, HAT-P-32 b, HAT-P-41 b, HAT-P-70 b, HD 189733b, HD 209458b, KELT-1 b, KELT-7 b, KELT-9 b, Kepler-13 A b, TrES-3 b, WASP-4 b, WASP-12 b, WASP-18 b, WASP-19 b, WASP-33 b, WASP-43 b, WASP-74 b, WASP-76 b, WASP-77 A b, WASP-79 b, WASP-103 b, and WASP-121 b. For WASP-121 b, we also add the available G102 grism. For all planets except HAT-P-70 b, data from the Spitzer Space Telescope are also available for at least the 3.6 and the 4.5um IRAC channels. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 106 25 Summary of our "full" retrievals on HST+Spitzer eclipse data (Day) and the HST transit data (Term) tableb3.dat 42 639 Eclipse spectra used in this population study tableb4.dat 39 418 Transit spectra used in this population study tabled1.dat 174 275 Table of the retrieval results for the 25 planets -------------------------------------------------------------------------------- See also: B/hst : HST Archived Exposures Catalog (STScI, 2007) J/A+A/482/L17 : CoRoT space mission. I. (Barge+, 2008) J/ApJ/683/1076 : Transits of exoplanet XO-3b (Winn+, 2008) J/A+A/506/359 : FORS2 and HAWKI photometry of CoRoT-1 (Gillon+, 2009) J/A+A/513/L3 : H-band thermal emission of WASP-19b (Anderson+, 2010) J/ApJ/727/125 : Secondary eclipses of WASP-12b with Spitzer (Campo+, 2011) J/ApJ/742/59 : HAT-P-32 and HAT-P-33 follow-up (Hartman+, 2011) J/A+A/526/L10 : Transits of of WASP-33 (Herrero+, 2011) J/AJ/144/139 : HAT-P-39, HAT-P-40, and HAT-P-41 follow-up (Hartman+, 2012) J/ApJ/761/123 : KELT-1 photometry and spectroscopy follow-up (Siverd+, 2012) J/A+A/547/A61 : WASP78 and WASP79 RV and photometric data (Smalley+, 2012) J/A+A/553/A49 : WASP-19b secondary eclipses (Abe+, 2013) J/MNRAS/434/1469 : ExoMol line lists for SiO (Barton+, 2013) J/MNRAS/437/1828 : ExoMol line list for HCN and HNC (Barber+, 2014) J/ApJ/795/166 : Exoplanet HD 189733b whitelight curve (Crouzet+, 2014) J/A+A/562/L3 : WASP-103b radial velocities and light curves (Gillon+, 2014) J/ApJ/791/55 : HD 189733b in transit light curve (McCullough+, 2014) J/ApJ/788/92 : Kepler-13Ab planet's occultation (Shporer+, 2014) J/MNRAS/440/1649 : ExoMol line lists for CH4 (Yurchenko+, 2014) J/MNRAS/448/1704 : ExoMol line lists for formaldehyde H2CO (Al-Refaie+, 2015) J/AJ/150/12 : Radial velocity of HD 33643 (Bieryla+, 2015) J/MNRAS/449/3613 : ExoMol line lists for AlO (Patrascu+, 2015) J/MNRAS/446/2337 : ExoMol line lists for phosphine (PH3) (Sousa-Silva+, 2015) J/MNRAS/460/4063 : ExoMol line list for H2S AYT2 (Yurchenko+, 2016) J/A+A/589/A58 : High-res. imaging of TEP systems (HITEP) (Evans+, 2016) J/MNRAS/463/771 : ExoMol XVIII. VO high-temperature sp. (McKemmish+, 2016) J/ApJ/831/64 : Mass-metallicities for giant planets (Thorngren+, 2016) J/A+A/585/A126 : Irradiated & bloated hot Jupiters RV and phot. (West+, 2016) J/A+A/606/A18 : WASP-103b light curves (Lendl+, 2017) J/AJ/153/136 : Planets and host stars with Gaia parallaxes (Stassun+, 2017) J/MNRAS/478/3220 : ExoMol. XXVII: spectra of C2H4 (Mant+, 2018) J/A+A/625/A136 : WASP-18b HST/WFC3 sp. phase curves (Arcangeli+, 2019) J/AJ/157/217 : Transit times of 5 WASP hot Jupiter (Bouma+, 2019) J/MNRAS/490/4638 : ExoMol molecular line lists. XXXV. NH3 (Coles+, 2019) J/AJ/157/242 : Updated targets for Ariel (Edwards+, 2019) J/A+A/627/A165 : KELT-9 b atm. model transmission sp. (Hoeijmakers+, 2019) J/MNRAS/486/2351 : ExoMol line lists. XXXII. MgO (Li+, 2019) J/MNRAS/485/5168 : Light curves of WASP-74 (Mancini+, 2019) J/AJ/157/101 : Cloud Atlas: HST/WFC3 NIR sp. library (Manjavacas+, 2019) J/MNRAS/488/2836 : ExoMol Molecular linelists. XXXIII. TiO (McKemmish+, 2019) J/AJ/157/82 : TEMP. V. Phot. of HAT-P-9, HAT-P-32 & HAT-P-36 (Wang+, 2019) J/A+A/632/A69 : CaII transmission sp. of WASP-33b and KELT-9b (Yan+, 2019) J/AJ/158/141 : Differential phot. & RVs of HAT-P-69 & -70 (Zhou+, 2019) J/A+A/635/A73 : Mult. study of transiting exoplanet hosts. I. (Bohn+, 2020) J/A+A/637/A36 : WASP-121b optical phase curve (Bourrier+, 2020) J/AJ/159/204 : HAT-P-41b transmission sp. with HST (Wakeford+, 2020) J/MNRAS/510/903 : ExoMol molecular line lists. XLIV. SiO (Yurchenko+, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Planet name 14- 16 A3 --- n_ID "HST" for HAT-P-70 b 18- 27 A10 --- Term-Det Term detection (s) 29- 39 A11 --- Term-Cl Term clouds (1) 41- 44 I4 K Term-T [564/2862]? Term temperature (1) 46- 49 I4 K e_Term-T [116/1105]? Lower uncertainty on Term-T 51- 53 I3 K E_Term-T [147/537]? Upper uncertainty on Term-T 55 A1 --- n_Term-T u: unknown 57- 82 A26 --- Day-Det Day detection (s) (2) 84 A1 --- n_Day-Det Note on Day-Det (3) 86- 89 I4 K Day-T [1388/4011] Day temperature 91- 93 I3 K e_Day-T [21/402] Day-T uncertainty 95- 106 A12 --- Day-Prof Day profile -------------------------------------------------------------------------------- Note (1): We report if clouds were found at the planet's terminator, and we indicate the retrieved temperature. The stated temperature is the retrieved atmospheric temperature, weighted by the contribution function. This temperature is not equal to the temperature obtained by the simpler blackbody fit, which we provide in the individual planet analyses in Appendix D. Note (2): Molecules that are only detected when Spitzer is added are marked with a star symbol (*). Note (3): Note on how trustworthy molecular detections are by comparing the Bayesian evidence to simpler models, Δln(E). Note as follows: b = decisive evidence (e.g., Δln(E)>5) l = strong evidence (e.g., Δln(E)>3) i = tentative evidence (e.g., Δln(E)>1) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- ID Planet identifier 15- 21 F7.4 um lambda [0.8/24] Central wavelength of the bin 23- 28 A6 um Width Bin width (1) 30- 35 F6.4 % Flux [0.0023/0.73] Flux 37- 42 F6.4 % e_Flux [0.0013/0.12] Uncertainty in Flux -------------------------------------------------------------------------------- Note (1): For Spitzer, the bin widths are irrelevant since we consider the spectral response of the channel. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- ID Planet identifier (1) 13- 18 F6.4 um lambda [1.12/1.63] Central wavelength of the bin 20- 25 F6.4 um Width [0.018/0.04] Bin width 27- 32 F6.4 % Depth [0.48/2.55] Transit depth 34- 39 F6.4 % e_Depth [0.0029/0.07] Uncertainty in Depth -------------------------------------------------------------------------------- Note (1): KELT-12 b, KELT-18 b, KELT-19 b, KELT-43 b, KELT-74 b, KELT-76 b and KELT-79 b were misprints for WASP-12 b, WASP-18 b, etc.; corrected at CDS. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- ID Planet identifier 14 A1 --- f_ID Flag on ID (1) 16- 25 A10 --- Param Parameter description (2) 27 A1 --- l_Red-HST Limit flag on Red-HST 29- 34 F6.2 --- Red-HST [-8.3/216.6]? Recovered Param value from HST red spectrum 36- 39 F4.2 --- E_Red-HST [0.0/2.3]? Upper uncertainty in Red-HST 41- 44 F4.2 --- e_Red-HST [0.0/5.2]? Lower uncertainty in Red-HST 46 A1 --- l_Red-HST+Sp Limit flag on Red-HST+Sp 48- 53 F6.2 --- Red-HST+Sp [-8.3/306.7]? Recovered Param value from HST & Spitzer red spectra 55- 58 F4.2 --- E_Red-HST+Sp [0.0/2.4]? Upper uncertainty in Red-HST+Sp 60- 63 F4.2 --- e_Red-HST+Sp [0.0/4.1]? Lower uncertainty in Red-HST+Sp 65 A1 --- l_Full-HST Limit flag on Full-HST 67- 72 F6.2 --- Full-HST [-9.8/224.61]? Recovered Param value from full HST spectrum 74- 77 F4.2 --- E_Full-HST [0.06/2.6]? Upper uncertainty in Full-HST 79- 82 F4.2 --- e_Full-HST [0.06/4.8]? Lower uncertainty in Full-HST 84 A1 --- l_Full-HST+Sp Limit flag on Full-HST+Sp 86- 92 F7.2 --- Full-HST+Sp [-10.69/313.8]? Recovered Param value from full HST & Spitzer spectra 94- 97 F4.2 --- E_Full-HST+Sp [0.06/3]? Upper uncertainty in Full-HST+Sp 99-102 F4.2 --- e_Full-HST+Sp [0.06/5]? Lower uncertainty in Full-HST+Sp 104-109 F6.2 --- eq-HST [-0.9/216.9]? Recovered Param value from HST equilibrium spectrum 111-114 F4.2 --- E_eq-HST [0.0/1.2]? Upper uncertainty in eq-HST 116-119 F4.2 --- e_eq-HST [0.0/1.3]? Lower uncertainty in eq-HST 121-128 F8.2 --- eq-HST+Sp [-2844.3/289.5]? Recovered Param value from HST & Spitzer equilibrium spectra 130-133 F4.2 --- E_eq-HST+Sp [0.0/1.3]? Upper uncertainty in eq-HST+Sp 135-138 F4.2 --- e_eq-HST+Sp [0.0/1.2]? Lower uncertainty in eq-HST+Sp 140 A1 --- l_Free-Trans Limit flag on Free-Trans 142-147 F6.2 --- Free-Trans [-8.2/209.8]? Recovered Param value from free transit spectra 149-152 F4.2 --- E_Free-Trans [0.2/2.6]? Upper uncertainty in Free-Trans 154-157 F4.2 --- e_Free-Trans [0.2/4.7]? Lower uncertainty in Free-Trans 159-164 F6.2 --- eq-Trans [-0.4/210.8]? Recovered Param value from equilibrium spectra 166-169 F4.2 --- E_eq-Trans [0.2/1.2]? Upper uncertainty in eq-Trans 171-174 F4.2 --- e_eq-Trans [0.2/1.1]? Lower uncertainty in eq-Trans -------------------------------------------------------------------------------- Note (1): Flag as follows: a = CoRoT-1 b: For comparison, the HST blackbody fit obtains ln(E)=112.5, the HST+Spitzer blackbody fit obtains ln(E)=125.5 and the featureless transit fit obtains ln(E)=96.4. b = HAT-P-2 b: For comparison, the HST blackbody fit obtains ln(E)=215.5 and the HST+Spitzer blackbody fit obtains ln(E)=243.3. c = HAT-P-7 b: For comparison, the HST blackbody fit obtains ln(E)=207.2, the HST+Spitzer blackbody fit obtains ln(E)=225.3 and the featureless transit fit obtains ln(E)=156.7. d = HAT-P-32 b: For comparison, the HST blackbody fit obtains ln(E)=174.1, the HST+Spitzer blackbody fit obtains ln(E)=188.8 and the featureless transit fit obtains ln(E)=157.2. e = HAT-P-41 b: For comparison, the HST blackbody fit obtains ln(E)=185.1, the HST+Spitzer blackbody fit obtains ln(E)=194.7 and the featureless transit fit obtains ln(E)=182.5. f = HAT-P-70 b: For comparison, the HST blackbody fit obtains ln(E)=191.6. g = HD 189733 b: For comparison, the HST blackbody fit obtains ln(E)=146.4, the HST+Spitzer blackbody fit obtains ln(E)=137.0 and the featureless transit fit obtains ln(E)=184.6. h = HD 209458 b: For comparison, the HST blackbody fit obtains ln(E)=9.3, the HST+Spitzer blackbody fit obtains ln(E)=-400.0 and the featureless transit fit obtains ln(E)=190.0. i = KELT-1 b: For comparison, the HST blackbody fit obtains ln(E)=177.7, the HST+Spitzer blackbody fit obtains ln(E)=192.2 and the featureless transit fit obtains ln(E)=190.5. j = KELT-7 b: For comparison, the HST blackbody fit obtains ln(E)=182.7, the HST+Spitzer blackbody fit obtains ln(E)=144.1 and the featureless transit fit obtains ln(E)=185.7. k = KELT-9 b: For comparison, the HST blackbody fit obtains ln(E)=8.9 and the HST+Spitzer blackbody fit obtains ln(E)=13.6. l = Kepler-13 A b: For comparison, the HST blackbody fit obtains ln(E)=101.3 and the HST+Spitzer blackbody fit obtains ln(E)=115.0. m = TrES-3 b: For comparison, the HST blackbody fit obtains ln(E)=106.9 and the HST+Spitzer blackbody fit obtains ln(E)=118.7. n = WASP-4 b: For comparison, the HST black-body fit obtains ln(E)=119.0 and the HST+Spitzer black-body fit obtains ln(E)=124.3. o = WASP-12 b: For comparison, the HST black-body fit obtains ln(E)=119.1, the HST+Spitzer black-body fit obtains ln(E)=117.5 and the featureless transit fit obtains ln(E)=168.9. p = WASP-18 b: For comparison, the HST blackbody fit obtains ln(E)=146.9, the HST+Spitzer blackbody fit obtains ln(E)=172.7 and the featureless transit fit obtains ln(E)=209.7. q = WASP-19 b: For comparison, the HST blackbody fit obtains ln(E)=171.1, the HST+Spitzer blackbody fit obtains ln(E)=189.2 and the featureless transit fit obtains ln(E)=164.8. r = WASP-33 b: For comparison, the HST blackbody fit obtains ln(E)=-178.0 and the HST+Spitzer blackbody fit obtains ln(E)=-169.4. s = WASP-43 b: For comparison, the HST blackbody fit obtains ln(E)=183.1, the HST+Spitzer blackbody fit obtains ln(E)=163.9 and the featureless transit fit obtains ln(E)=196.8. t = WASP-74 b: For comparison, the HST blackbody fit obtains ln(E)=200.6, the HST+Spitzer blackbody fit obtains ln(E)=192.5 and the featureless transit fit obtains ln(E)=195.7. u = WASP-76 b: For comparison, the HST blackbody fit obtains ln(E)=180.8, the HST+Spitzer blackbody fit obtains ln(E)=195.0 and the featureless transit fit obtains ln(E)=175.0. v = WASP-77 A b: For comparison, the HST blackbody fit obtains ln(E)=157.0 and the HST+Spitzer blackbody fit obtains ln(E)=65.7. w = WASP-79 b: For comparison, the HST blackbody fit obtains ln(E)=124.2, the HST+Spitzer blackbody fit obtains ln(E)=137.9 and the featureless transit fit obtains ln(E)=172.9. x = WASP-103 b: For comparison, the HST blackbody fit obtains ln(E)=174.0, the HST+Spitzer blackbody fit obtains ln(E)=185.3 and the featureless transit fit obtains ln(E)=161.8. y = WASP-121 b: For comparison, the HST blackbody fit obtains ln(E)=91.1, the HST+Spitzer blackbody fit obtains ln(E)=140.0 and the featureless transit fit obtains ln(E)=173.2. Note (2): Parameters: log(CO) = log CO abundance; log(CO2) = log CO2 abundance; log(TiO) = log TiO abundance; log(VO) = log VO abundance; log(TiO) = log TiO abundance; log(e-) = log electron density; log(Z) = Metallicity; C/O = Carbon/Oxygen abundance ratio; ln(E) = natural log of the Bayesian Evidence. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 19-Jul-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line