J/ApJS/260/3 25 hot-Jupiter properties from HST & Spitzer (Changeat+, 2022)
Five key exoplanet questions answered via the analysis of 25 hot-Jupiter
atmospheres in eclipse.
Changeat Q., Edwards B., Al-Refaie A.F., Tsiaras A., Skinner J.W.,
Cho J.Y.K., Yip K.H., Anisman L., Ikoma M., Bieger M.F., Venot O.,
Shibata S., Waldmann I.P., Tinetti G.
<Astrophys. J. Suppl. Ser., 260, 3 (2022)>
=2022ApJS..260....3C 2022ApJS..260....3C
ADC_Keywords: Exoplanets; Models, atmosphere; Spectra, infrared
Keywords: Exoplanet atmospheres ; Bayesian statistics ; Surveys ;
Hubble Space Telescope ; Astronomy data reduction
Abstract:
Population studies of exoplanets are key to unlocking their
statistical properties. So far, the inferred properties have been
mostly limited to planetary, orbital, and stellar parameters extracted
from, e.g., Kepler, radial velocity, and Gaia data. More recently an
increasing number of exoplanet atmospheres have been observed in
detail from space and the ground. Generally, however, these
atmospheric studies have focused on individual planets, with the
exception of a couple of works that have detected the presence of
water vapor and clouds in populations of gaseous planets via
transmission spectroscopy. Here, using a suite of retrieval tools, we
analyze spectroscopic and photometric data of 25 hot Jupiters,
obtained with the Hubble and Spitzer Space Telescopes via the eclipse
technique. By applying the tools uniformly across the entire set of
25 planets, we extract robust trends in the thermal structure and
chemical properties of hot Jupiters not obtained in past studies. With
the recent launch of the James Webb Space Telescope and the upcoming
missions Twinkle and Ariel, population-based studies of exoplanet
atmospheres, such as the one presented here, will be a key approach to
understanding planet characteristics, formation, and evolution in our
galaxy.
Description:
Our study encompasses data for 25 hot Jupiters observed in eclipse
with the HST-WFC3 G141 grism and Spitzer: CoRoT-1 b, HAT-P-2 b,
HAT-P-7 b, HAT-P-32 b, HAT-P-41 b, HAT-P-70 b, HD 189733b, HD 209458b,
KELT-1 b, KELT-7 b, KELT-9 b, Kepler-13 A b, TrES-3 b, WASP-4 b,
WASP-12 b, WASP-18 b, WASP-19 b, WASP-33 b, WASP-43 b, WASP-74 b,
WASP-76 b, WASP-77 A b, WASP-79 b, WASP-103 b, and WASP-121 b. For
WASP-121 b, we also add the available G102 grism. For all planets
except HAT-P-70 b, data from the Spitzer Space Telescope are also
available for at least the 3.6 and the 4.5um IRAC channels.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 106 25 Summary of our "full" retrievals on HST+Spitzer
eclipse data (Day) and the HST transit data (Term)
tableb3.dat 42 639 Eclipse spectra used in this population study
tableb4.dat 39 418 Transit spectra used in this population study
tabled1.dat 174 275 Table of the retrieval results for the 25 planets
--------------------------------------------------------------------------------
See also:
B/hst : HST Archived Exposures Catalog (STScI, 2007)
J/A+A/482/L17 : CoRoT space mission. I. (Barge+, 2008)
J/ApJ/683/1076 : Transits of exoplanet XO-3b (Winn+, 2008)
J/A+A/506/359 : FORS2 and HAWKI photometry of CoRoT-1 (Gillon+, 2009)
J/A+A/513/L3 : H-band thermal emission of WASP-19b (Anderson+, 2010)
J/ApJ/727/125 : Secondary eclipses of WASP-12b with Spitzer (Campo+, 2011)
J/ApJ/742/59 : HAT-P-32 and HAT-P-33 follow-up (Hartman+, 2011)
J/A+A/526/L10 : Transits of of WASP-33 (Herrero+, 2011)
J/AJ/144/139 : HAT-P-39, HAT-P-40, and HAT-P-41 follow-up (Hartman+, 2012)
J/ApJ/761/123 : KELT-1 photometry and spectroscopy follow-up (Siverd+, 2012)
J/A+A/547/A61 : WASP78 and WASP79 RV and photometric data (Smalley+, 2012)
J/A+A/553/A49 : WASP-19b secondary eclipses (Abe+, 2013)
J/MNRAS/434/1469 : ExoMol line lists for SiO (Barton+, 2013)
J/MNRAS/437/1828 : ExoMol line list for HCN and HNC (Barber+, 2014)
J/ApJ/795/166 : Exoplanet HD 189733b whitelight curve (Crouzet+, 2014)
J/A+A/562/L3 : WASP-103b radial velocities and light curves (Gillon+, 2014)
J/ApJ/791/55 : HD 189733b in transit light curve (McCullough+, 2014)
J/ApJ/788/92 : Kepler-13Ab planet's occultation (Shporer+, 2014)
J/MNRAS/440/1649 : ExoMol line lists for CH4 (Yurchenko+, 2014)
J/MNRAS/448/1704 : ExoMol line lists for formaldehyde H2CO (Al-Refaie+, 2015)
J/AJ/150/12 : Radial velocity of HD 33643 (Bieryla+, 2015)
J/MNRAS/449/3613 : ExoMol line lists for AlO (Patrascu+, 2015)
J/MNRAS/446/2337 : ExoMol line lists for phosphine (PH3) (Sousa-Silva+, 2015)
J/MNRAS/460/4063 : ExoMol line list for H2S AYT2 (Yurchenko+, 2016)
J/A+A/589/A58 : High-res. imaging of TEP systems (HITEP) (Evans+, 2016)
J/MNRAS/463/771 : ExoMol XVIII. VO high-temperature sp. (McKemmish+, 2016)
J/ApJ/831/64 : Mass-metallicities for giant planets (Thorngren+, 2016)
J/A+A/585/A126 : Irradiated & bloated hot Jupiters RV and phot. (West+, 2016)
J/A+A/606/A18 : WASP-103b light curves (Lendl+, 2017)
J/AJ/153/136 : Planets and host stars with Gaia parallaxes (Stassun+, 2017)
J/MNRAS/478/3220 : ExoMol. XXVII: spectra of C2H4 (Mant+, 2018)
J/A+A/625/A136 : WASP-18b HST/WFC3 sp. phase curves (Arcangeli+, 2019)
J/AJ/157/217 : Transit times of 5 WASP hot Jupiter (Bouma+, 2019)
J/MNRAS/490/4638 : ExoMol molecular line lists. XXXV. NH3 (Coles+, 2019)
J/AJ/157/242 : Updated targets for Ariel (Edwards+, 2019)
J/A+A/627/A165 : KELT-9 b atm. model transmission sp. (Hoeijmakers+, 2019)
J/MNRAS/486/2351 : ExoMol line lists. XXXII. MgO (Li+, 2019)
J/MNRAS/485/5168 : Light curves of WASP-74 (Mancini+, 2019)
J/AJ/157/101 : Cloud Atlas: HST/WFC3 NIR sp. library (Manjavacas+, 2019)
J/MNRAS/488/2836 : ExoMol Molecular linelists. XXXIII. TiO (McKemmish+, 2019)
J/AJ/157/82 : TEMP. V. Phot. of HAT-P-9, HAT-P-32 & HAT-P-36 (Wang+, 2019)
J/A+A/632/A69 : CaII transmission sp. of WASP-33b and KELT-9b (Yan+, 2019)
J/AJ/158/141 : Differential phot. & RVs of HAT-P-69 & -70 (Zhou+, 2019)
J/A+A/635/A73 : Mult. study of transiting exoplanet hosts. I. (Bohn+, 2020)
J/A+A/637/A36 : WASP-121b optical phase curve (Bourrier+, 2020)
J/AJ/159/204 : HAT-P-41b transmission sp. with HST (Wakeford+, 2020)
J/MNRAS/510/903 : ExoMol molecular line lists. XLIV. SiO (Yurchenko+, 2022)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Planet name
14- 16 A3 --- n_ID "HST" for HAT-P-70 b
18- 27 A10 --- Term-Det Term detection (s)
29- 39 A11 --- Term-Cl Term clouds (1)
41- 44 I4 K Term-T [564/2862]? Term temperature (1)
46- 49 I4 K e_Term-T [116/1105]? Lower uncertainty on Term-T
51- 53 I3 K E_Term-T [147/537]? Upper uncertainty on Term-T
55 A1 --- n_Term-T u: unknown
57- 82 A26 --- Day-Det Day detection (s) (2)
84 A1 --- n_Day-Det Note on Day-Det (3)
86- 89 I4 K Day-T [1388/4011] Day temperature
91- 93 I3 K e_Day-T [21/402] Day-T uncertainty
95- 106 A12 --- Day-Prof Day profile
--------------------------------------------------------------------------------
Note (1): We report if clouds were found at the planet's terminator, and we
indicate the retrieved temperature. The stated temperature is the
retrieved atmospheric temperature, weighted by the contribution
function. This temperature is not equal to the temperature obtained by
the simpler blackbody fit, which we provide in the individual planet
analyses in Appendix D.
Note (2): Molecules that are only detected when Spitzer is added are marked with
a star symbol (*).
Note (3): Note on how trustworthy molecular detections are by comparing the
Bayesian evidence to simpler models, Δln(E). Note as follows:
b = decisive evidence (e.g., Δln(E)>5)
l = strong evidence (e.g., Δln(E)>3)
i = tentative evidence (e.g., Δln(E)>1)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- ID Planet identifier
15- 21 F7.4 um lambda [0.8/24] Central wavelength of the bin
23- 28 A6 um Width Bin width (1)
30- 35 F6.4 % Flux [0.0023/0.73] Flux
37- 42 F6.4 % e_Flux [0.0013/0.12] Uncertainty in Flux
--------------------------------------------------------------------------------
Note (1): For Spitzer, the bin widths are irrelevant since we consider
the spectral response of the channel.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- ID Planet identifier (1)
13- 18 F6.4 um lambda [1.12/1.63] Central wavelength of the bin
20- 25 F6.4 um Width [0.018/0.04] Bin width
27- 32 F6.4 % Depth [0.48/2.55] Transit depth
34- 39 F6.4 % e_Depth [0.0029/0.07] Uncertainty in Depth
--------------------------------------------------------------------------------
Note (1): KELT-12 b, KELT-18 b, KELT-19 b, KELT-43 b, KELT-74 b, KELT-76 b and
KELT-79 b were misprints for WASP-12 b, WASP-18 b, etc.; corrected at CDS.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tabled1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- ID Planet identifier
14 A1 --- f_ID Flag on ID (1)
16- 25 A10 --- Param Parameter description (2)
27 A1 --- l_Red-HST Limit flag on Red-HST
29- 34 F6.2 --- Red-HST [-8.3/216.6]? Recovered Param value
from HST red spectrum
36- 39 F4.2 --- E_Red-HST [0.0/2.3]? Upper uncertainty in Red-HST
41- 44 F4.2 --- e_Red-HST [0.0/5.2]? Lower uncertainty in Red-HST
46 A1 --- l_Red-HST+Sp Limit flag on Red-HST+Sp
48- 53 F6.2 --- Red-HST+Sp [-8.3/306.7]? Recovered Param value from
HST & Spitzer red spectra
55- 58 F4.2 --- E_Red-HST+Sp [0.0/2.4]? Upper uncertainty in Red-HST+Sp
60- 63 F4.2 --- e_Red-HST+Sp [0.0/4.1]? Lower uncertainty in Red-HST+Sp
65 A1 --- l_Full-HST Limit flag on Full-HST
67- 72 F6.2 --- Full-HST [-9.8/224.61]? Recovered Param value
from full HST spectrum
74- 77 F4.2 --- E_Full-HST [0.06/2.6]? Upper uncertainty in Full-HST
79- 82 F4.2 --- e_Full-HST [0.06/4.8]? Lower uncertainty in Full-HST
84 A1 --- l_Full-HST+Sp Limit flag on Full-HST+Sp
86- 92 F7.2 --- Full-HST+Sp [-10.69/313.8]? Recovered Param value
from full HST & Spitzer spectra
94- 97 F4.2 --- E_Full-HST+Sp [0.06/3]? Upper uncertainty in Full-HST+Sp
99-102 F4.2 --- e_Full-HST+Sp [0.06/5]? Lower uncertainty in Full-HST+Sp
104-109 F6.2 --- eq-HST [-0.9/216.9]? Recovered Param value from
HST equilibrium spectrum
111-114 F4.2 --- E_eq-HST [0.0/1.2]? Upper uncertainty in eq-HST
116-119 F4.2 --- e_eq-HST [0.0/1.3]? Lower uncertainty in eq-HST
121-128 F8.2 --- eq-HST+Sp [-2844.3/289.5]? Recovered Param value from
HST & Spitzer equilibrium spectra
130-133 F4.2 --- E_eq-HST+Sp [0.0/1.3]? Upper uncertainty in eq-HST+Sp
135-138 F4.2 --- e_eq-HST+Sp [0.0/1.2]? Lower uncertainty in eq-HST+Sp
140 A1 --- l_Free-Trans Limit flag on Free-Trans
142-147 F6.2 --- Free-Trans [-8.2/209.8]? Recovered Param value from
free transit spectra
149-152 F4.2 --- E_Free-Trans [0.2/2.6]? Upper uncertainty in Free-Trans
154-157 F4.2 --- e_Free-Trans [0.2/4.7]? Lower uncertainty in Free-Trans
159-164 F6.2 --- eq-Trans [-0.4/210.8]? Recovered Param value from
equilibrium spectra
166-169 F4.2 --- E_eq-Trans [0.2/1.2]? Upper uncertainty in eq-Trans
171-174 F4.2 --- e_eq-Trans [0.2/1.1]? Lower uncertainty in eq-Trans
--------------------------------------------------------------------------------
Note (1): Flag as follows:
a = CoRoT-1 b: For comparison, the HST blackbody fit obtains ln(E)=112.5,
the HST+Spitzer blackbody fit obtains ln(E)=125.5 and the featureless
transit fit obtains ln(E)=96.4.
b = HAT-P-2 b: For comparison, the HST blackbody fit obtains
ln(E)=215.5 and the HST+Spitzer blackbody fit obtains ln(E)=243.3.
c = HAT-P-7 b: For comparison, the HST blackbody fit obtains ln(E)=207.2,
the HST+Spitzer blackbody fit obtains ln(E)=225.3 and the
featureless transit fit obtains ln(E)=156.7.
d = HAT-P-32 b: For comparison, the HST blackbody fit obtains
ln(E)=174.1, the HST+Spitzer blackbody fit obtains ln(E)=188.8
and the featureless transit fit obtains ln(E)=157.2.
e = HAT-P-41 b: For comparison, the HST blackbody fit obtains
ln(E)=185.1, the HST+Spitzer blackbody fit obtains ln(E)=194.7
and the featureless transit fit obtains ln(E)=182.5.
f = HAT-P-70 b: For comparison, the HST blackbody fit obtains
ln(E)=191.6.
g = HD 189733 b: For comparison, the HST blackbody fit obtains
ln(E)=146.4, the HST+Spitzer blackbody fit obtains ln(E)=137.0
and the featureless transit fit obtains ln(E)=184.6.
h = HD 209458 b: For comparison, the HST blackbody fit obtains
ln(E)=9.3, the HST+Spitzer blackbody fit obtains ln(E)=-400.0
and the featureless transit fit obtains ln(E)=190.0.
i = KELT-1 b: For comparison, the HST blackbody fit obtains ln(E)=177.7,
the HST+Spitzer blackbody fit obtains ln(E)=192.2 and the
featureless transit fit obtains ln(E)=190.5.
j = KELT-7 b: For comparison, the HST blackbody fit obtains
ln(E)=182.7, the HST+Spitzer blackbody fit obtains ln(E)=144.1
and the featureless transit fit obtains ln(E)=185.7.
k = KELT-9 b: For comparison, the HST blackbody fit obtains
ln(E)=8.9 and the HST+Spitzer blackbody fit obtains ln(E)=13.6.
l = Kepler-13 A b: For comparison, the HST blackbody fit obtains
ln(E)=101.3 and the HST+Spitzer blackbody fit obtains ln(E)=115.0.
m = TrES-3 b: For comparison, the HST blackbody fit obtains
ln(E)=106.9 and the HST+Spitzer blackbody fit obtains ln(E)=118.7.
n = WASP-4 b: For comparison, the HST black-body fit obtains
ln(E)=119.0 and the HST+Spitzer black-body fit obtains ln(E)=124.3.
o = WASP-12 b: For comparison, the HST black-body fit obtains
ln(E)=119.1, the HST+Spitzer black-body fit obtains ln(E)=117.5
and the featureless transit fit obtains ln(E)=168.9.
p = WASP-18 b: For comparison, the HST blackbody fit obtains
ln(E)=146.9, the HST+Spitzer blackbody fit obtains ln(E)=172.7
and the featureless transit fit obtains ln(E)=209.7.
q = WASP-19 b: For comparison, the HST blackbody fit obtains
ln(E)=171.1, the HST+Spitzer blackbody fit obtains ln(E)=189.2
and the featureless transit fit obtains ln(E)=164.8.
r = WASP-33 b: For comparison, the HST blackbody fit obtains
ln(E)=-178.0 and the HST+Spitzer blackbody fit obtains ln(E)=-169.4.
s = WASP-43 b: For comparison, the HST blackbody fit obtains
ln(E)=183.1, the HST+Spitzer blackbody fit obtains ln(E)=163.9
and the featureless transit fit obtains ln(E)=196.8.
t = WASP-74 b: For comparison, the HST blackbody fit obtains
ln(E)=200.6, the HST+Spitzer blackbody fit obtains ln(E)=192.5
and the featureless transit fit obtains ln(E)=195.7.
u = WASP-76 b: For comparison, the HST blackbody fit obtains
ln(E)=180.8, the HST+Spitzer blackbody fit obtains ln(E)=195.0
and the featureless transit fit obtains ln(E)=175.0.
v = WASP-77 A b: For comparison, the HST blackbody fit obtains
ln(E)=157.0 and the HST+Spitzer blackbody fit obtains ln(E)=65.7.
w = WASP-79 b: For comparison, the HST blackbody fit obtains
ln(E)=124.2, the HST+Spitzer blackbody fit obtains ln(E)=137.9
and the featureless transit fit obtains ln(E)=172.9.
x = WASP-103 b: For comparison, the HST blackbody fit obtains
ln(E)=174.0, the HST+Spitzer blackbody fit obtains ln(E)=185.3
and the featureless transit fit obtains ln(E)=161.8.
y = WASP-121 b: For comparison, the HST blackbody fit obtains ln(E)=91.1,
the HST+Spitzer blackbody fit obtains ln(E)=140.0 and the
featureless transit fit obtains ln(E)=173.2.
Note (2): Parameters:
log(CO) = log CO abundance;
log(CO2) = log CO2 abundance;
log(TiO) = log TiO abundance;
log(VO) = log VO abundance;
log(TiO) = log TiO abundance;
log(e-) = log electron density;
log(Z) = Metallicity;
C/O = Carbon/Oxygen abundance ratio;
ln(E) = natural log of the Bayesian Evidence.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 19-Jul-2022