J/ApJS/261/33   Phot. metallicity prediction of RR Lyrae stars   (Dekany+, 2022)

Photometric metallicity prediction of fundamental-mode RR Lyrae stars in the Gaia optical and Ks infrared wave bands by deep learning. Dekany I., Grebel E.K. <Astrophys. J. Suppl. Ser., 261, 33 (2022)> =2022ApJS..261...33D 2022ApJS..261...33D
ADC_Keywords: Stars, variable; Abundances, [Fe/H]; Photometry, UBVRI; Surveys; Models Keywords: RR Lyrae variable stars ; Metallicity ; Light curves ; Neural networks Abstract: RR Lyrae stars are useful chemical tracers thanks to the empirical relationship between their heavy-element abundance and the shape of their light curves. However, the consistent and accurate calibration of this relation across multiple photometric wave bands has been lacking. We have devised a new method for the metallicity estimation of fundamental-mode RR Lyrae stars in the Gaia optical G and near-infrared VISTA Ks wave bands by deep learning. First, an existing metallicity prediction method is applied to large photometric data sets, which are then used to train long short-term memory recurrent neural networks for the regression of the [Fe/H] to the light curves in other wave bands. This approach allows an unbiased transfer of our accurate, spectroscopically calibrated I-band formula to additional bands at the expense of minimal additional noise. We achieve a low mean absolute error of 0.1 dex and high R2 regression performance of 0.84 and 0.93 for the Ks and G bands, respectively, measured by cross-validation. The resulting predictive models are deployed on the Gaia DR2 and VVV inner bulge RR Lyrae catalogs. We estimate mean metallicities of -1.35dex for the inner bulge and -1.7dex for the halo, which are significantly less than the values obtained by earlier photometric prediction methods. Using our results, we establish a public catalog of photometric metallicities of over 60,000 Galactic RR Lyrae stars and provide an all-sky map of the resulting RR Lyrae metallicity distribution. The software code used for training and deploying our recurrent neural networks is made publicly available in the open-source domain. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 112 55723 *I-band photometric parameters and metallicities of RRab stars in the bulge and disk areas of the OGLE Collection of Variable Stars (OCVS) table4.dat 71 58652 G-band photometric metallicity estimates and basic light-curve attributes of Gaia DR2 RRab stars table5.dat 80 4447 KS-band photometric metallicity estimates and basic light-curve attributes of the VVV bulge RRab stars discovered by Dekany & Grebel (2020, J/ApJ/898/46) -------------------------------------------------------------------------------- Note on table1.dat: Results are shown for stars that pass the following criteria: Cphi≥0.8, Atot≤1.2, S/N≥50. -------------------------------------------------------------------------------- See also: I/345 : Gaia DR2 (Gaia Collaboration, 2018) J/AJ/108/1016 : Kinematics of local RR lyrae stars. I. (Layden, 1994) J/AJ/110/2319 : Abundances in RR Lyr variables (Clementini+ 1995) J/A+A/312/111 : [Fe/H] from RR Lyrae light curves (Jurcsik+, 1996) J/ApJS/197/29 : Chemical compositions of 11 RR Lyrae (For+, 2011) J/ApJ/782/59 : Abundances of 8 RR Lyrae subclass C stars (Govea+, 2014) J/MNRAS/447/2404 : Equivalent width of 21 RR Lyrae stars (Pancino+, 2015) J/MNRAS/466/2602 : Blazhko effect in Galactic RR Lyrae (Prudil+, 2017) J/ApJ/848/68 : Abund. & RVs of stable and Blazhko RRc stars (Sneden+, 2017) J/ApJ/857/54 : JHKs photometry of VVV RR Lyrae stars (Dekany+, 2018) J/MNRAS/478/4590 : Light curves of RR Lyrae variables in M31 (Tanakul+, 2018) J/A+A/622/A60 : Gaia DR2 misclassified RR Lyrae list (Clementini+, 2019) J/ApJ/898/46 : NIR LCs of RRab stars from the VVV survey (Dekany+, 2020) J/ApJ/908/20 : Field RR Lyrae as galactic probes. II. (Crestani+, 2021) J/A+A/657/A123 : OGLE IV & Gaia EDR3 data for RR Lyrae (Oliveira+, 2022) http://ogledb.astrouw.edu.pl/~ogle/OCVS/ : OCVS home page Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 A1 --- Field Field identifier (1) 3- 7 I5 --- ID [1/68197] Object identifier within the Field (1) 9- 10 I2 h RAh Hour of Right Ascension (J2000) 12- 13 I2 min RAm Minute of Right Ascension (J2000) 15- 19 F5.2 s RAs Second of Right Ascension (J2000) 21 A1 --- DE- Sign of the Declination (J2000) 22- 23 I2 deg DEd Degree of Declination (J2000) 25- 26 I2 arcmin DEm Arcminute of Declination (J2000) 28- 31 F4.1 arcsec DEs Arcsecond of Declination (J2000) 33- 38 F6.3 [Sun] [Fe/H] [-8.7/3.2] Metallicity estimate 40- 45 F6.3 mag Imag [10.78/21.3] Mean I band magnitude 47- 51 I5 --- Nep [16/15016] Number of epochs in the light curve 53- 60 F8.6 d Per [0.27/1] Period 62- 66 F5.3 --- Atot [0.016/1.2] Total (peak-to-valley) amplitude 68- 72 F5.3 --- A1 [0.006/0.5] The A1 Fourier parameter 74- 78 F5.3 --- A2 [0.001/0.3] The A2 Fourier parameter 80- 84 F5.3 --- A3 [0/0.2] The A3 Fourier parameter 86- 92 F7.4 --- phi21 [5.16/10.5] The φ21 Fourier parameter 94- 99 F6.4 --- phi31 [2.7/9.1] The φ31 Fourier parameter 101-105 F5.3 --- Cphi [0.8/1] Phase coverage (1-maximum phase lag) 107-112 F6.1 --- S/N [50/8796] Signal-to-Noise -------------------------------------------------------------------------------- Note (1): Field and ID designations, as: b = bulge (48153 occurrences); in Simbad d = disk (7570 occurrences); in Simbad -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 I19 --- Gaia Gaia DR2 source identifier 21- 26 F6.3 [Sun] [Fe/H] [-3.1/-0.06] Mean Metallicity prediction from a model ensemble 28- 32 F5.3 [Sun] e_[Fe/H] [0.01/0.8] Standard deviation of [Fe/H] 34- 39 F6.3 mag Gmag [9.4/21] Mean Gaia DR2 G band magnitude 41- 43 I3 --- Nep [21/247] Number of epochs in the light curve 45- 52 F8.6 d Per [0.3/0.98] Period 54- 58 F5.3 --- Atot [0.12/1.4] Total (peak-to-valley) amplitude 60- 64 F5.3 --- Cphi [0.85/1] Phase coverage (1-maximum phase lag) 66- 71 F6.1 --- S/N [30/5443] Signal-to-Noise -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 --- [DG2020] [7/13250] Dekany & Grebel 2020, J/ApJ/898/46 identifier 7- 8 I2 h RAh [17/18] Hour of Right Ascension (J2000) 10- 11 I2 min RAm Minute of Right Ascension (J2000) 13- 17 F5.2 s RAs Second of Right Ascension (J2000) 19 A1 --- DE- Sign of the Declination (J2000) 20- 21 I2 deg DEd Degree of Declination (J2000) 23- 24 I2 arcmin DEm Arcminute of Declination (J2000) 26- 29 F4.1 arcsec DEs Arcsecond of Declination (J2000) 31- 36 F6.3 [Sun] [Fe/H] [-2.6/-0.06] Metallicity estimate from a model ensemble 38- 42 F5.3 [Sun] e_[Fe/H] [0.008/0.5] Standard deviation of [Fe/H] 44- 49 F6.3 mag Ksmag [12/16.3] Mean KS band magnitude 51- 53 I3 --- Nep [33/469] Number of epochs in the light curve 55- 62 F8.6 d Per [0.29/0.98] Period 64- 68 F5.3 --- Atot [0.058/0.7] Total (peak-to-valley) amplitude 70- 74 F5.3 --- Cphi [0.8/0.99] Phase coverage (1-maximum phase lag) 76- 80 F5.1 --- S/N [30.4/272] Signal-to-Noise -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 29-Sep-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line