J/ApJS/261/36     LAMOST DR7 stellar param. from RRNet model     (Xiong+, 2022)

A model RRNet for spectral information exploitation and LAMOST Medium-Resolution Spectrum parameter estimation. Xiong S., Li X., Liao C. <Astrophys. J. Suppl. Ser., 261, 36 (2022)> =2022ApJS..261...36X 2022ApJS..261...36X
ADC_Keywords: Models; Spectra, optical; Abundances Keywords: Astronomy data analysis ; Spectroscopy ; Stellar atmospheres ; Stellar abundances Abstract: This work proposes a residual recurrent neural network (RRNet) for synthetically extracting spectral information and estimating stellar atmospheric parameters together with 15 chemical element abundances for medium-resolution spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). The RRNet consists of two fundamental modules: a residual module and a recurrent module. The residual module extracts spectral features based on the longitudinally driving power from parameters, while the recurrent module recovers spectral information and restrains the negative influences from noises based on Cross-band Belief Enhancement. RRNet is trained by the spectra from common stars between LAMOST DR7 and the APOGEE-Payne catalog. The 17 stellar parameters and their uncertainties for 2.37 million medium-resolution spectra from LAMOST DR7 are predicted. For spectra with a signal-to-noise ratio ≥10, the precision of estimations (Teff and logg) are 88K and 0.13dex, respectively, elements C, Mg, Al, Si, Ca, Fe, and Ni are 0.05-0.08dex, and N, O, S, K, Ti, Cr, and Mn are 0.09-0.14dex, while that of Cu is 0.19dex. Compared with StarNet and SPCANet, RRNet shows higher accuracy and robustness. In comparison to Apache Point Observatory Galactic Evolution Experiment and Galactic Archaeology with HERMES surveys, RRNet manifests good consistency within a reasonable range of bias. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file rrnetcat.dat 856 2377510 The LAMOST-RRNet catalog -------------------------------------------------------------------------------- See also: V/146 : LAMOST DR1 catalogs (Luo+, 2015) V/156 : LAMOST DR7 catalogs (Luo+, 2019) J/AJ/137/4377 : List of SEGUE plate pairs (Yanny+, 2009) J/other/RAA/11.924 : Atmospheric parameters for 771 stars (Wu+, 2011) J/AJ/151/144 : ASPCAP weights for the APOGEE elements (Garcia+, 2016) J/AJ/156/126 : Stellar parameters from BACCHUS analysis (Jonsson+, 2018) J/ApJS/245/34 : Abundances for 6 million stars from LAMOST DR5 (Xiang+, 2019) J/ApJ/891/23 : Stellar abundances from LAMOST MRS (SPCAnet) (Wang+, 2020) J/A+A/640/A127 : Open cluster properties with Gaia and LAMOST (Zhong+, 2020) J/MNRAS/506/150 : The GALAH+ Survey DR3 (Buder+, 2021) http://www.lamost.org/dr7/ : LAMOST DR7 home page http://github.com/Chan-0312/RRNet : RRNet code and trained models Byte-by-byte Description of file: rrnetcat.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- obsID [588902003/747816250] Identification of LAMOST spectrum 11- 55 A45 --- FileName Name of the FITS file LAMOST spectrum 57- 76 F20.16 deg RAdeg Right ascension (J2000) 78- 96 F19.16 deg DEdeg [-9.15/79.1] Declination (J2000) 98- 107 A10 --- Nameb Spectrum extension name of blue part 109- 118 A10 --- Namer Spectrum extension name of red part 120- 125 F6.2 --- SNRb [10/999] Signal-to-noise ratio of blue part 127- 132 F6.2 --- SNRr [10/999] Signal-to-noise ratio of red part 134- 151 F18.13 K Teff [3779/6597] Effective temperature 153- 171 F19.15 K e_Teff [33/484] Teff uncertainty 173- 190 F18.16 [cm/s2] logg [0.95/4.8] Log of surface gravity 192- 209 F18.16 [cm/s2] e_logg [0.08/0.8] logg uncertainty 211- 233 E23.17 [-] CH [-2.38/0.34] [C/H] abundance 235- 252 F18.16 [-] e_CH [0.029/0.5] CH uncertainty 254- 276 E23.17 [-] [N/H] [-1.94/0.9] [N/H] abundance 278- 295 F18.16 [-] e_[N/H] [0.038/0.52] [N/H] uncertainty 297- 319 E23.17 [-] OH [-1.44/0.44] [O/H] abundance 321- 338 F18.16 [-] e_OH [0.028/0.5] OH uncertainty 340- 362 E23.17 [-] MgH [-1.9/0.6] [Mg/H] abundance 364- 381 F18.16 [-] e_MgH [0.02/0.4] MgH uncertainty 383- 405 E23.17 [-] AlH [-2.7/0.8] [Al/H] abundance 407- 424 F18.16 [-] e_AlH [0.027/0.6] AlH uncertainty 426- 448 E23.17 [-] SiH [-1.81/0.61] [Si/H] abundance 450- 467 F18.16 [-] e_SiH [0.019/0.31] SiH uncertainty 469- 491 E23.17 [-] SH [-1.91/0.5] [S/H] abundance 493- 510 F18.16 [-] e_SH [0.039/0.42] SH uncertainty 512- 534 E23.17 [-] KH [-2.1/0.5] [K/H] abundance 536- 553 F18.16 [-] e_KH [0.04/0.61] KH uncertainty 555- 577 E23.17 [-] CaH [-1.97/0.52] [Ca/H] abundance 579- 596 F18.16 [-] e_CaH [0.02/0.4] CaH uncertainty 598- 620 E23.17 [-] TiH [-1.75/0.6] [Ti/H] abundance 622- 639 F18.16 [-] e_TiH [0.026/0.6] TiH uncertainty 641- 663 E23.17 [-] CrH [-2.25/0.64] [Cr/H] abundance 665- 682 F18.16 [-] e_CrH [0.028/0.5] CrH uncertainty 684- 706 E23.17 [-] MnH [-2.1/0.5] [Mn/H] abundance 708- 725 F18.16 [-] e_MnH [0.029/0.6] MnH uncertainty 727- 749 E23.17 [-] [Fe/H] [-1.88/0.61] [Fe/H] abundance 751- 768 F18.16 [-] e_[Fe/H] [0.025/0.4] [Fe/H] uncertainty 770- 792 E23.17 [-] NiH [-2.55/0.72] [Ni/H] abundance 794- 811 F18.16 [-] e_NiH [0.02/0.5] NiH uncertainty 813- 835 E23.17 [-] CuH [-2.6/0.6] [Cu/H] abundance 837- 854 F18.16 [-] e_CuH [0.05/0.7] CuH uncertainty 856 I1 --- Flag [0/1] Recommended flag: 1=good -------------------------------------------------------------------------------- History: Downloaded from http://nadc.china-vo.org/res/r101112/
(End) Emmanuelle Perret [CDS] 30-Sep-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line