J/ApJS/262/10      Kepler eclipsing binaries with Gaia data      (Knote+, 2022)

Characteristics of Kepler eclipsing binaries displaying a significant O'Connell effect. Knote M.F., Caballero-Nieves S.M., Gokhale V., Johnston K.B., Perlman E.S. <Astrophys. J. Suppl. Ser., 262, 10 (2022)> =2022ApJS..262...10K 2022ApJS..262...10K
ADC_Keywords: Binaries, eclipsing; Photometry; Optical; Spectral types Keywords: Eclipsing binary stars ; Close binary stars ; Interacting binary stars Abstract: The O'Connell effect --the presence of unequal maxima in eclipsing binaries-- remains an unsolved riddle in the study of close binary systems. The Kepler space telescope produced high-precision photometry of nearly 3000 eclipsing binary systems, providing a unique opportunity to study the O'Connell effect in a large sample and in greater detail than in previous studies. We have characterized the observational properties-including temperature, luminosity, and eclipse depth-of a set of 212 systems (7.3% of Kepler eclipsing binaries) that display a maxima flux difference of at least 1%, representing the largest sample of O'Connell effect systems yet studied. We explored how these characteristics correlate with each other to help understand the O'Connell effect's underlying causes. We also describe some system classes with peculiar light-curve features aside from the O'Connell effect (∼24% of our sample), including temporal variation and asymmetric minima. We found that the O'Connell effect size's correlations with period and temperature are inconsistent with Kouzuma's starspot study. Up to 20% of systems display the parabolic eclipse timing variation signal expected for binaries undergoing mass transfer. Most systems displaying the O'Connell effect have the brighter maximum following the primary eclipse, suggesting a fundamental link between which maximum is brighter and the O'Connell effect's physical causes. Most importantly, we find that the O'Connell effect occurs exclusively in systems where the components are close enough to significantly affect each other, suggesting that the interaction between the components is ultimately responsible for causing the O'Connell effect. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 148 258 Complete Kepler O'Connell effect target list -------------------------------------------------------------------------------- See also: V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) I/350 : Gaia EDR3 (Gaia Collaboration, 2020) I/352 : Distances to 1.47 billion stars in Gaia EDR3 (Bailer-Jones+, 2021) J/A+A/395/587 : GR Tau BV light curves (Zhang+, 2002) J/AJ/128/1761 : HATNET variability survey (Hartman+, 2004) J/A+A/454/855 : Geneva photometry of W Cru (Pavlovski+, 2006) J/AJ/135/850 : Eclipsing binaries found in TrES (Devor+, 2008) J/AJ/136/1067 : New beta Lyrae and Algol candidates in NSVS (Hoffman+, 2008) J/AJ/138/466 : NSVS variables automated classification (Hoffman+, 2009) J/AcA/59/33 : ASAS. Variable stars cat. in Kepler field. (Pigulski+, 2009) J/AJ/142/112 : KIC photometric calibration (Brown+, 2011) J/AJ/141/83 : Kepler Mission. I. Eclipsing binaries in DR1 (Prsa+, 2011) J/AJ/142/160 : Kepler Mission. II. EBs in DR2 (Slawson+, 2011) J/ApJS/208/9 : Intrinsic colors & temperatures of PMS stars (Pecaut+, 2013) J/MNRAS/431/966 : Transiting planet WASP-50b (Tregloan-Reed+, 2013) J/AJ/147/45 : Kepler. IV. Eclipse times for close binaries (Conroy+, 2014) J/MNRAS/448/429 : Starspots in short-period Kepler binaries (Balaji+, 2015) J/MNRAS/447/2714 : Flare stars across the H-R diagram (Balona+, 2015) J/AJ/151/101 : Kepler Mission. VIII. False positives (Abdul-Masih+, 2016) J/MNRAS/455/4136 : Kepler triples (Borkovits+, 2016) J/ApJ/829/23 : Stellar flares from Q0-Q17 Kepler LCs (Davenport, 2016) J/A+A/594/A39 : LAMOST-Kepler param. and activity indicators (Frasca+, 2016) J/ApJS/224/37 : White-light flares on close bin. from Kepler (Gao+, 2016) J/AJ/151/68 : Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016) J/AcA/66/405 : Gal. bulge eclipsing & ellipsoidal bin. (Soszynski+, 2016) J/AJ/153/71 : Kepler follow-up observation prog. I. (Furlan+, 2017) J/AJ/154/105 : 529 Kepler eclipsing binaries (Kjurkchieva+, 2017) J/AJ/154/216 : Radial velocities of 41 Kepler EBs (Matson+, 2017) J/AJ/157/150 : Mid-eclipse times of KIC 10544976 (Almeida+, 2019) J/AJ/158/106 : Eclipsing binaries RVs from APOGEE sp. (Cunningham+, 2019) J/MNRAS/487/2474 : GALAH unresolved triple Sun-like star (Cotar+, 2019) J/A+A/623/A110 : Gaia DR2. Variable stars in CMD (Gaia Collaboration+, 2019) J/A+A/631/A126 : KIC 9832227 light curves (Kovacs+, 2019) J/A+A/628/A41 : KIC stars in Kepler/XMM-Newton (Pizzocaro+, 2019) J/ApJS/256/11 : Short period eclipsing binaries from Kepler (Bienias+, 2021) J/AJ/161/231 : A list of ∼330000 stars Kepler missed (Wolniewicz+, 2021) J/ApJS/258/16 : TESS Eclipsing Binary stars. I. Sectors 1-26 (Prsa+, 2022) J/ApJS/262/12 : Kepler P<2d close binaries (Kobulnicky+, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 I8 --- KIC [2159783/12602985] Kepler Input Catalog ID 10- 11 I2 h RAh [18/20] Hour of Right Ascension (J2000) 13- 14 I2 min RAm Minute of Right Ascension (J2000) 16- 19 F4.1 s RAs Second of Right Ascension (J2000) 21 A1 --- DE- Sign of the Declination (J2000) 23- 24 I2 deg DEd Degree of Declination (J2000) 26- 27 I2 arcmin DEm Arcminute of Declination (J2000) 29- 33 F5.2 arcsec DEs Arcsecond of Declination (J2000) 35- 40 F6.4 d Per [0.23/9.76] Orbital Period; KEBC 42- 43 A2 --- LCC Light Curve Classification (1) 45- 48 F4.2 --- Morph [0.17/0.97]? Matijevic+ 2012AJ....143..123M 2012AJ....143..123M morphology parameter 50- 54 F5.3 mag BP-RP [0.26/2.4] Gaia EDR3 BP-RP color index 56- 61 F6.3 mag BPmag [10.25/19.3] Gaia BP magnitude 63- 68 F6.3 mag Gmag [9.84/18.85] Gaia G magnitude 70- 76 F7.2 pc Dist [94/7743]? Bailer-Jones+ 2021, I/352 distance 78- 84 F7.3 Lsun Lum [0.006/51]? Gaia G-band Luminosity (2) 86- 93 A8 --- SpTlit Spectral Type from Literature 95 I1 --- r_SpTlit [1/3]? Source of SpTlit (3) 97-100 A4 --- SpTcol Spectral Type from Color (4) 102-125 A24 --- Ref Papers Citing System (5) 127-134 A8 --- Samp "Core" or "Marginal" (46 occurrences) Sample System 136-148 A13 --- Notes ? Notable Features of System (6) -------------------------------------------------------------------------------- Note (1): The LCC corresponds to the following light curve classes: Al = Algol (84 occurrences) BL = Beta Lyrae (47 occurrences) WU = W Ursae Majoris (127 occurrences) Note (2): We assume a G-band absolute magnitude of 4.68 for the Sun, following Cotar et al. (2019, J/MNRAS/487/2474). Note (3): Source as follows: 1 = Frasca et al. (2016, J/A+A/594/A39); 2 = Ramsay et al. (2014MNRAS.437..132R 2014MNRAS.437..132R); 3 = Almenara et al. (2012MNRAS.420.3017A 2012MNRAS.420.3017A). Note (4): Determined using Dr. Eric Mamajek's table giving Gaia colors for each spectral type (http://www.pas.rochester.edu/~emamajek/ EEMdwarfUBVIJHKcolorsTeff.txt); a luminosity class of V is implied for each system Note (5): Reference numbers correspond to the following papers: 1 = Balona (2015, J/MNRAS/447/2714); 2 = Gao et al. (2016, J/ApJS/224/37); 3 = Davenport (2016, J/ApJ/829/23); 4 = Tran et al. (2013ApJ...774...81T 2013ApJ...774...81T); 5 = Balaji et al. (2015, J/MNRAS/448/429); 6 = Kouzuma (2018PASJ...70...90K 2018PASJ...70...90K); 7 = Borkovits et al. (2016, J/MNRAS/455/4136); 8 = Furlan et al. (2017, J/AJ/153/71); 9 = Smith et al. (2015AJ....150..126S 2015AJ....150..126S); 10 = Pizzocaro et al. (2019, J/A+A/628/A41); 11 = Gaulme et al. (2013ApJ...767...82G 2013ApJ...767...82G); 12 = Liakos & Niarchos (2017MNRAS.465.1181L 2017MNRAS.465.1181L); 13 = Kjurkchieva et al. (2017, J/AJ/154/105); 14 = Matson et al. (2017, J/AJ/154/216); 15 = Kobulnicky et al. (2022, J/ApJS/262/12); 16 = Hartman et al. (2004, J/AJ/128/1761) 17 = Hoffman et al. (2008, J/AJ/136/1067) or Hoffman et al (2009, J/AJ/138/466); 18 = Devor et al. (2008, J/AJ/135/850); 19 = Pigulski et al. (2009, J/AcA/59/33); 20 = Ramsay et al. (2014MNRAS.437..132R 2014MNRAS.437..132R) 21 = Clark Cunningham et al. (2019, J/AJ/158/106); 22 = Debski et al. (2014CoSka..43..427D 2014CoSka..43..427D); 23 = Yoldas (2021RMxAA..57..351Y 2021RMxAA..57..351Y); 24 = NegmEldin et al. (2019RAA....19...25N 2019RAA....19...25N); 25 = Blattler & Diethelm (2000IBVS.4982....1B 2000IBVS.4982....1B), Blattler & Diethelm (2000IBVS.4996....1B 2000IBVS.4996....1B); 26 = Kunt & Dal (2017AcA....67..345K 2017AcA....67..345K); 27 = Molnar et al. (2017ApJ...840....1M 2017ApJ...840....1M), Socia et al. (2018ApJ...864L..32S 2018ApJ...864L..32S), Pavlenko et al. (2018A&A...615A.120P 2018A&A...615A.120P), and Kovacs et al. (2019, J/A+A/631/A126); 28 = Almenara et al. (2012MNRAS.420.3017A 2012MNRAS.420.3017A) and Almeida et al. (2019, J/AJ/157/150); 29 = Liakos (2017A&A...607A..85L 2017A&A...607A..85L). Note (6): SC indicates the system shows the indicated feature only in its short cadence data. Code as follows: TV = Temporal Variations AM = Asymmetric Minima WD = White Dwarf CU = Concave-Up F = literature indicates system shows flares S = literature indicates system shows spots M = literature indicates system shows mass transfer -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 15-Nov-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line