J/ApJS/272/1        Periodic variable stars from LAMOST DR9        (Qiao+, 2024)

A classification catalog of periodic variable stars for LAMOST DR9 based on machine learning. Qiao P., Xu T., Wang F., Mei Y., Deng H., Tan L., Liu C. <Astrophys. J. Suppl. Ser., 272, 1 (2024)> =2024ApJS..272....1Q 2024ApJS..272....1Q
ADC_Keywords: Stars, variable; Colors; Surveys; Optical; Photometry, infrared; Models Keywords: Catalogs ; Variable stars ; Cross-validation ; Light curves Abstract: Identifying and classifying variable stars is essential to time-domain astronomy. The Large Area Multi-Object Fiber Optic Spectroscopic Telescope (LAMOST) acquired a large amount of spectral data. However, there is no corresponding variable source-related information in the data, constraining LAMOST data utilization for scientific research. In this study, we systematically investigated variable source classification methods for LAMOST data. We constructed a 10-class classification model using three mainstream machine-learning methods. Through performance comparison, we chose the LightGBM and XGBoost models. We further identified variable source candidates in the r band in LAMOST DR9 and obtained 281,514 variable source candidates with probabilities greater than 95%. Subsequently, we filtered out the sources of periodic variable sources using the generalized Lomb-Scargle periodogram and classified these periodic variable sources using the classification model. Finally, we propose a reliable periodic variable star catalog containing 176,337 stars with specific types. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table6.dat 327 176337 *Classification results of variable stars for LAMOST DR9 based on LightGBM and XGBoost -------------------------------------------------------------------------------- Note on table6.dat: LightGBM is a machine-learning algorithm based on gradient-boosted decision trees proposed by Microsoft in 2016 (Ke G., Meng Q., Finley T.+ 2017 Advances in Neural Information Processing Systems 30 ed I. Guyon et al. (NeurIPS)). See Section 3.1. The XGBoost algorithm, proposed by Tianqi Chen at the University of Washington, is a powerful tool for classification and regression tasks (Chen & Guestrin 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'16 (New York, NY, USA: Association for Computing Machinery)); see Jia et al. 2023RAA....23j5012J 2023RAA....23j5012J -------------------------------------------------------------------------------- See also: II/246 : 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) II/328 : AllWISE Data Release (Cutri+ 2013) V/156 : LAMOST DR7 catalogs (Luo+, 2019) I/350 : Gaia EDR3 (Gaia Collaboration, 2020) II/366 : ASAS-SN catalog of variable stars (Jayasinghe+, 2018-2020) J/AJ/134/973 : SDSS Stripe 82 star catalogs (Ivezic+, 2007) J/MNRAS/414/2602 : Automated classification of HIP variables (Dubath+, 2011) J/AJ/146/101 : LINEAR. III. Cat. of periodic variables (Palaversa+, 2013) J/ApJS/213/9 : Catalina Surveys periodic variable stars (Drake+, 2014) J/A+A/566/A43 : EPOCH Project. EROS-2 LMC periodic variables (Kim+, 2014) J/A+A/580/A17 : α-element abund. of Cepheid stars (Genovali+, 2015) J/ApJS/249/18 : The ZTF catalog of periodic variable stars (Chen+, 2020) J/ApJS/249/22 : Radial velocity variable stars from LAMOST DR4 (Tian+, 2020) J/ApJS/259/11 : LAMOST variable sources based on ZTF phot. (Xu+, 2022) J/ApJS/267/7 : YSO candidates from LAMOST LRS DR9 & ZTF (Zhang+, 2023) J/A+A/675/A195 : ZTF DR11 classif. in ZTF/4MOST sky (Sanchez-Saez+, 2023) Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- LAMOST [101092/914316131] LAMOST DR9 source identifier 11- 26 I16 --- ZTF ZTF DR11 Source identifier 28- 37 F10.6 deg RAdeg Right Ascension (J2000) 39- 47 F9.6 deg DEdeg [-9.3/87] Declination (J2000) 49- 55 F7.4 mas plx [-9/52.1]? Gaia DR3 parallax 57- 67 F11.6 d Per [0.02/1000] Period, best derived period (1) 69- 72 A4 --- Type Variable source type (2) 74- 81 F8.6 --- IterStd [0.0049/2.6] Recalculated standard deviation (3) 83- 86 I4 --- Nobs [50/1311] Number of observations 88- 95 F8.6 --- Std [0.007/2] Magnitude standard deviation 97- 106 A10 --- Skew Skewness of light curves 108- 117 A10 --- Kurt Kurtosis of the magnitude distribution 119- 126 F8.6 --- Amp [0.015/3.1] Amplitude (4) 128- 139 F12.6 --- chi2 [0.4/29701] χ2 statistic 141- 148 F8.6 --- Cusum [0.027/2.22] Range of magnitude cumulative sums (5) 150- 157 F8.6 --- MAD [0.003/1.7] Median Absolute Deviation 159- 175 F17.6 --- sKurt [-2.4/1341195100] Small sample kurtosis of the magnitudes 177- 184 F8.6 --- Eta [0.01/2.7] Von Neumann statistic, Kim+ (2014, J/A+A/566/A43) 186- 193 F8.6 --- SWTest [0.03/1] Shapiro-Wilk normality test statistics (Shapiro & Wilk 1965, doi:10.1093/biomet/52.3-4.591) 195- 202 F8.6 --- KSVar [0.2/1] Stetson K statistic (Stetson 1994PASP..106..250S 1994PASP..106..250S) 204- 212 F9.6 --- HMAR [0.03/24.7] Half magnitude amplitude ratio (6) 214- 221 F8.6 --- fu1std [0.006/0.7] Fraction of observations beyond 1 standard deviation (D'Isanto+ 2016MNRAS.457.3119D 2016MNRAS.457.3119D) 223- 231 A9 --- gskew Median-of-magnitudes based measure of the skew 233- 240 F8.6 --- MedBRP [0.006/1] Fraction, photometric points within amplitude/10 of median (7) 242- 249 F8.6 --- f1power [0/1] f1 power (8) 251- 258 F8.6 --- PerAmp [0.001/0.4] Largest difference, min or max magnitude and median (9) 260- 267 F8.5 mag BP-RP [-0.6/7.6]? Gaia DR3 color, BP-RP 269- 276 A8 mag G-BP Gaia DR3 color, G-BP 278- 285 F8.5 mag G-RP [-0.5/4.2]? Gaia DR3 color, G-RP 287- 292 F6.3 mag W1-W2 [-2.3/2.5] ALLWISE color, W1-W2 294- 299 F6.3 mag W2-W3 [-2.8/8.5]? ALLWISE color, W2-W3 301- 306 F6.3 mag W1-W3 [-2.9/8.5]? ALLWISE color, W1-W3 308- 313 F6.3 mag J-Ks [-1.3/3.6]? 2MASS color, J-Ks 315- 320 F6.3 mag J-H [-1.3/2.1]? 2MASS color, J-H 322- 327 F6.3 mag H-Ks [-1.9/2.6]? 2MASS color, H-Ks -------------------------------------------------------------------------------- Note (1): Best period derived from the LAMOST observations following Lomb (1976Ap&SS..39..447L 1976Ap&SS..39..447L); Scargle (1982ApJ...263..835S 1982ApJ...263..835S); Kovacs+ (2002A&A...391..369K 2002A&A...391..369K); Schwarzenberg-Czerny (1996ApJ...460L.107S 1996ApJ...460L.107S); Stellingwerf (1978ApJ...224..953S 1978ApJ...224..953S). Note (2): Variable source types as follows: CEP = Cepheid-type variable (56 occurrences) DSCT = δ-Scuti variables (10973 occurrences) EA = Algol-type binaries (55764 occurrences) EB = β-Lyrae type binaries (4671 occurrences) EW = W Ursae Majoris type binaries (13774 occurrences) Mira = Mira type variables (87 occurrences) ROT = Rotational variables (79170 occurrences) RRAB = RR Lyra, ab-type (2839 occurrences) RRC = RR Lyra, c-type (1493 occurrences) SR = Semi-regular variables (7510 occurrences) Note (3): The data other than the median plus or minus twice the standard deviation are removed, and the standard deviation is recalculated (Xu+ 2022, J/ApJS/259/11). Note (4): Half of the difference between the median of the maximum and minimum 5% magnitudes. Note (5): The range of magnitude cumulative sums (Kim+ 2011, J/ApJS/259/11). Note (6): Half magnitude amplitude ratio, ratio of magnitudes fainter or brighter than the average (Kim & Bailer-Jones 2016A&A...587A..18K 2016A&A...587A..18K). Note (7): Fraction (≤1) of photometric points within amplitude/10 of the median magnitude (Richards+ 2011ApJ...733...10R 2011ApJ...733...10R). Note (8): (ξ202)/ξ202 of the fit (van Roestel+ 2021AJ....161..267V 2021AJ....161..267V) Note (9): Largest percentage difference between either the max or min magnitude and the median (Richards+ 2011ApJ...733...10R 2011ApJ...733...10R). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 26-Jul-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line