J/MNRAS/403/1541 Lyman and Werner molecular hydrogen transitions (Malec+, 2010)
Keck telescope constraint on cosmological variation of the proton-to-electron
mass ratio.
Malec A.L., Buning R., Murphy M.T, Milutinovic N., Ellison S.L.,
Prochaska J.X., Kaper L., Tumlinson J., Carswell R.F., Ubachs W.
<Mon. Not. R. Astron. Soc. 403, 1541-1555 (2010)>
=2010MNRAS.403.1541M 2010MNRAS.403.1541M
ADC_Keywords: Atomic physics ; Line Profiles
Keywords: atomic data - line: profiles - techniques: spectroscopic -
methods: data analysis - quasars: absorption lines
Abstract:
Molecular transitions recently discovered at redshift zabs=2.059
towards the bright background quasar J2123-0050 are analysed to
limit cosmological variation in the proton-to-electron mass ratio,
µ=mp/me. Observed with the Keck telescope, the optical echelle
spectrum has the highest resolving power and largest number (86) of
H2 transitions in such analyses so far. Also, (seven) HD transitions
are used for the first time to constrain µ-variation.
Description:
We provide a compilation of the most precise laboratory wavelengths
and calculated parameters important for absorption-line work with H2
transitions redwards of the hydrogen Lyman limit. This includes
studies that limit the cosmological variation in the
proton-to-electron mass ratio, µ, and other astrophysical studies
of H2 in general. Represented are all allowed Lyman and Werner H2
transitions between the lowest 8 rotational levels in the ground and
excited states with excited state vibrational quantum numbers up to 20
and 6 for Lyman and Werner transitions, respectively.
Objects:
------------------------------------------------------------------
RA (2000) DE Designation(s)
------------------------------------------------------------------
21 23 29.5 -00 50 53 QSO J2123-0050 = 2MASS J21232946-0050529
------------------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 65 400 *Data for Lyman and Werner molecular hydrogen
(H2) transitions
--------------------------------------------------------------------------------
Note on table1.dat: The ground state vibrational quantum number, ν'',
for all transitions is 0.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- Band [LW] Lyman (L) or Werner (W) transition
3- 4 I2 --- nu' Excited state vibrational quantum number
6 A1 --- Branch [PQR] Rotational branch label (1)
8 I1 --- J" Ground state rotational quantum number
10- 20 F11.6 0.1nm lambda Laboratory vacuum wavelength
22- 29 F8.6 0.1nm e_lambda 1-σ uncertainty on lambda
31- 32 A2 --- r_lambda Reference for lambda and e_lambda (2)
34- 45 F12.10 --- f Oscillator strength (3)
47- 53 E7.2 s-1 Gamma Natural damping coefficient (4)
55- 65 F11.8 --- K Sensitivity coefficient (5)
--------------------------------------------------------------------------------
Note (1): Branch codes are:
P = => J'-J" = -1
Q = => J'-J" = 0
R = => J'-J" = 1
where J' and J" are the excited state and ground state J-levels,
respectively.
Note (2): References as follows:
1 = Bailly et al. (2009, Mol. Phys., accepted)
2a = Ubachs et al. (2007JMoSp.241..155U 2007JMoSp.241..155U) (directly measured wavelengths)
2b = Ubachs et al. (2007JMoSp.241..155U 2007JMoSp.241..155U) (wavelengths calculated from
directly measured lines via combination differences)
3 = Abgrall et al. (1993JMoSp.157..512A 1993JMoSp.157..512A) (note that these wavelengths
are much less precise than those from references 1 and 2),
ground states derived directly from Jennings et al.
(1984ApJ...282L..85J 1984ApJ...282L..85J)
Note (3): Oscillator strengths were calculated from the Einstein A
coefficients given by Abgrall et al. (1994CaJPh..72..856A 1994CaJPh..72..856A).
Note (4): Damping coefficients were calculated from the total transition
probabilities (At) in Abgrall et al. (2000A&AS..141..297A 2000A&AS..141..297A).
Note (5): Sensitivity coefficients calculated in Ubachs et al.
(2007JMoSp.241..155U 2007JMoSp.241..155U) which have estimated uncertainties of
typically <5x10-4.
--------------------------------------------------------------------------------
Acknowledgements:
Adrian Malec, amalec(at)swin.edu.au
(End) Adrian Malec [Swinburne, Australia], Patricia Vannier [CDS] 19-Apr-2010