J/MNRAS/431/2453        SN1996cr radio observations             (Meunier+, 2013)
Performing a stellar autopsy using the radio-bright remnant of SN 1996cr.
    Meunier C., Bauer F.E., Dwarkadas V.V., Koribalski B., Emonts B.,
    Hunstead R.W., Campbell-Wilson D., Stockdale C., Tingay S.J.
   <Mon. Not. R. Astron. Soc., 431, 2453-2463 (2013)>
   =2013MNRAS.431.2453M 2013MNRAS.431.2453M
ADC_Keywords: Supernova remnants ; Radio sources
Keywords: methods: numerical- circumstellar matter- supernovae: general -
          supernovae: individual: SN 1996cr - stars: winds, outflows
Abstract:
    We present newly reduced archival radio observations of SN 1996cr in
    the Circinus Galaxy from the Australia Telescope Compact Array and the
    Molonglo Observatory Synthesis Telescope, and attempt to model its
    radio light curves using recent hydrodynamical simulations of the
    interaction between the supernova (SN) ejecta and the circumstellar
    material (CSM) at X-ray wavelengths. The radio data within the first
    1000d show clear signs of free-free absorption (FFA), which decreases
    gradually and is minimal above 1.4GHz after day ∼3000. Constraints
    on the FFA optical depth provide estimates of the CSM free electron
    density, which allows insight into the ionization of SN 1996cr's CSM
    and offers a test on the density distribution adopted by the
    hydrodynamical simulation. The intrinsic spectral index of the
    radiation shows evidence for spectral flattening, which is
    characterized by α=0.852±0.002 at day 3000 and a decay rate
    of Δα=-0.014±0.001yr-1. The striking similarity in
    the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests
    this may be a relatively common feature of SNe/CSM shocks. We adopt
    this spectral index variation to model the synchrotron radio emission
    of the shock, and consider several scalings that relate the parameters
    of the hydrodynamical simulation to the magnetic field and electron
    distribution. The simulated light curves match the large-scale
    features of the observed light curves, but fail to match certain
    tightly constraining sections. This suggests that simple energy
    density scalings may not be able to account for the complexities of
    the true physical processes at work, or alternatively, that the
    parameters of the simulation require modification in order to
    accurately represent the surroundings of SN 1996cr.
Description:
    Bauer et al. (2008ApJ...688.1210B 2008ApJ...688.1210B) provide radio data up to 2007.
    However, since more data exist for comparison, and some of the data
    presented in Bauer et al. (2008ApJ...688.1210B 2008ApJ...688.1210B) were rereduced to
    clean up artefacts and incorporate a larger array of calibration data,
    we detail the data reduction procedures here. The data presented here
    supersede those of Bauer et al. (2008ApJ...688.1210B 2008ApJ...688.1210B)
    Numerous observations of the Circinus Galaxy exist from studies at
    radio wavelengths spanning 1995 to 2011 (e.g., Elmouttie et al.
    1995MNRAS.275L..53E 1995MNRAS.275L..53E; Greenhill et al. 1997ApJ...474L.103G 1997ApJ...474L.103G; Phillips et
    al. 1998MNRAS.300.1131P 1998MNRAS.300.1131P; Jones et al. 1999MNRAS.302..649J 1999MNRAS.302..649J; McCallum et
    al. 2005AJ....129.1231M 2005AJ....129.1231M, 2009MNRAS.392.1339M 2009MNRAS.392.1339M; Wilson et al.
    2011MNRAS.416..832W 2011MNRAS.416..832W). These were retrieved from the Australia
    Telescope Compact Array (ATCA) archive1 and were reduced with miriad
    (v4.0.5 and v20110616) following the procedures outlined in the ATNF
    Miriad User Manual.
Objects:
    -------------------------------------------------------------
         RA   (ICRS)   DE       Designation(s)
    -------------------------------------------------------------
     14 13 10.05  -65 20 44.8   SN1996cr = CXOU J141310.0-652044
    -------------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
 FileName   Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe         80        .   This file
table1.dat    175       71   ATCA Radio observations (Australia Telescope
                             Compact Array)
tablea1.dat   141       71   Flux densities of Calibrators
tablea2.dat   140       73   Flux densities of the nucleus
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label    Explanations
--------------------------------------------------------------------------------
   1- 10  A10   "date"  Obs.Date Starting date of observation
  12- 13  I2    ---     Ep       [1/14]? Epoch number whose data were combined,
                                    as described in Sec. 3.2.
  16- 19  I4    d       Time     [-120/5791] Days from explosion date
  21- 26  A6    ---     ObsID    Observing program ID
  28- 33  A6    ---     Array    Array configuration
  35- 39  I5    MHz     Freq1    [88632]?=0 Observed W band mean frequency (3)
  41- 45  F5.2  mJy     Sint1    ?=0 Integrated flux density in band W (1)
  47- 50  F4.2  mJy   e_Sint1    ?=0 rms uncertainty on Sint1 (2)
  52- 56  I5    MHz     Freq2    [34496]?=0 Observed Ka band mean frequency Ka
  58- 62  F5.2  mJy     Sint2    ?=0 Integrated flux density in band Ka (1)
  64- 67  F4.2  mJy   e_Sint2    ?=0 rms uncertainty on Sint2 (2)
  69- 73  I5    MHz     Freq3    [16960/23659]?=0 Observed K band mean frequency
  75- 79  F5.2  mJy     Sint3    ?=0 Integrated flux density in band K (1)
  81- 85  F5.2  mJy   e_Sint3    ?=0 rms uncertainty on Sint3 (2)
  87- 90  I4    MHz     Freq4    [6024/9000]?=0 Observed X band mean frequency
      91  A1    ---   l_Sint4    Limit flag on Sint4
  92- 97  F6.2  mJy     Sint4    ?=0 Integrated flux density in band X (1)
  99-103  F5.2  mJy   e_Sint4    ?=0 rms uncertainty on Sint4 (2)
 105-108  I4    MHz     Freq5    [4786/5500]?=0 Observed C band mean frequency
     109  A1    ---   l_Sint5    Limit flag on Sint5
 110-115  F6.2  mJy     Sint5    ?=0 Integrated flux density in band C (1)
 117-121  F5.2  mJy   e_Sint5    ?=0 rms uncertainty on Sint5 (2)
 123-126  I4    MHz     Freq6    [2100/2768]?=0 Observed S band mean frequency
     127  A1    ---   l_Sint6    Limit flag on Sint6
 128-133  F6.2  mJy     Sint6    ?=0 Integrated flux density in band S (1)
 135-139  F5.2  mJy   e_Sint6    ?=0 rms uncertainty on Sint6 (2)
 141-144  I4    MHz     Freq7    [1376/1664]?=0 Observed L band mean frequency
     145  A1    ---   l_Sint7    Limit flag on Sint7
 146-151  F6.2  mJy     Sint7    ?=0 Integrated flux density in band L (1)
 153-157  F5.2  mJy   e_Sint7    ?=0 rms uncertainty on Sint7 (2)
 159-162  I4    MHz     Freq8    [843]?=0 Observed UHF band mean frequency (4)
 164-169  F6.2  mJy     Sint8    ?=0 Integrated flux density in band UHF (1)
 171-175  F5.2  mJy   e_Sint8    ?=0 rms uncertainty on Sint8 (2)
--------------------------------------------------------------------------------
Note (1): Integrated flux densities, as determined from UVFIT or IMFIT in
  Miriad, or 3σ upper limits, as determined from IMSTAT in Miriad.
Note (2): Uncertainties include both statistical and systematic error terms.
  The systematic error is estimated from the ratio of the measured calibrator
  fluxes over its estimated historical value based on monitored light curves
  (typical variance was 5-20%).
Note (3): 89GHz data provided by Ott (Private communication).
Note (4): 843MHz data provided by Campbell-Wilson/Hunstead.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label    Explanations
--------------------------------------------------------------------------------
   1- 10  A10   "date"  Obs.Date Starting date of observation
  12- 17  A6    ---     ObsID    Observing program ID
  19- 26  A8    ---     Cal      Calibrator
  28- 32  I5    MHz     Freq2    [34496]?=0 Observed K band mean frequency
  34- 39  F6.2  mJy     Sint2    ?=0 Integrated flux density in band Ka (1)
  41- 45  F5.2  mJy   e_Sint2    ? rms uncertainty on Sint2
  47- 51  I5    MHz     Freq3    [16960/23659]?=0 Observed K band mean frequency
  53- 59  F7.2  mJy     Sint3    ?=0 Integrated flux density in band K (1)
  61- 65  F5.2  mJy   e_Sint3    ? rms uncertainty on Sint3
  67- 70  I4    MHz     Freq4    [6024/9000]?=0 Observed X band mean frequency
  72- 78  F7.2  mJy     Sint4    ?=0 Integrated flux density in band X (1)
  80- 84  F5.2  mJy   e_Sint4    ? rms uncertainty on Sint4
  86- 89  I4    MHz     Freq5    [4786/5500]?=0 Observed C band mean frequency
  91- 97  F7.2  mJy     Sint5    ?=0 Integrated flux density in band C (1)
  99-103  F5.2  mJy   e_Sint5    ? rms uncertainty on Sint5
 105-108  I4    MHz     Freq6    [2100/2496]?=0 Observed S band mean frequency
 110-116  F7.2  mJy     Sint6    ?=0 Integrated flux density in band S (1)
 118-122  F5.2  mJy   e_Sint6    ? rms uncertainty on Sint6
 124-127  I4    MHz     Freq7    [1376/1664]?=0 Observed L band mean frequency
 129-135  F7.2  mJy     Sint7    ?=0 Integrated flux density in band L (1)
 137-141  F5.2  mJy   e_Sint7    ? rms uncertainty on Sint7
--------------------------------------------------------------------------------
Note (1): Integrated flux densities in units of mJy as measured by UVFIT in
     MIRIAD.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label    Explanations
--------------------------------------------------------------------------------
   1- 10  A10   "date"  Obs.Date Starting date of observation
  12- 17  A6    ---     ObsID    Observing program ID
  19- 23  I5    MHz     Freq1    [88632]?=0 Observed Wa band mean frequency
  25- 29  F5.2  mJy     Sint1    ?=0 Integrated flux density in band Wa (1)
  31- 34  F4.2  mJy   e_Sint1    ?=0 rms uncertainty on Sint1
  36- 40  I5    MHz     Freq2    [34496]?=0 Observed Ka band mean frequency
  42- 46  F5.2  mJy     Sint2    ?=0 Integrated flux density in band Ka (1)
  48- 51  F4.2  mJy   e_Sint2    ?=0 rms uncertainty on Sint2
  53- 57  I5    MHz     Freq3    [16960/23659]?=0 Observed K band mean frequency
  59- 64  F6.2  mJy     Sint3    ?=0 Integrated flux density in band K (1)
  66- 70  F5.2  mJy   e_Sint3    ?=0 rms uncertainty on Sint3
  72- 75  I4    MHz     Freq4    [6024/9000]?=0 Observed X band mean frequency
  77- 82  F6.2  mJy     Sint4    ?=0 Integrated flux density in band X (1)
  84- 88  F5.2  mJy   e_Sint4    ?=0 rms uncertainty on Sint4
  90- 93  I4    MHz     Freq5    [4786/5500]?=0 Observed C band mean frequency
  95- 99  F5.2  mJy     Sint5    ?=0 Integrated flux density in band C (1)
 101-104  F4.2  mJy   e_Sint5    ?=0 rms uncertainty on Sint5
 106-109  I4    MHz     Freq6    [2100/2768]?=0 Observed S band mean frequency
 111-116  F6.2  mJy     Sint6    ?=0 Integrated flux density in band S (1)
 118-122  F5.2  mJy   e_Sint6    ?=0 rms uncertainty on Sint6
 124-127  I4    MHz     Freq7    [1376/1664]?=0 Observed L band mean frequency
 129-134  F6.2  mJy     Sint7    ?=0 Integrated flux density in band L (1)
 136-140  F5.2  mJy   e_Sint7    ?=0 rms uncertainty on Sint7
--------------------------------------------------------------------------------
Note (1): Integrated flux densities as measured by UVFIT or IMFIT in Miriad.
--------------------------------------------------------------------------------
History:
    From electronic version of the journal
(End)                                      Patricia Vannier [CDS]    16-Jun-2014