J/MNRAS/443/1999      X-ray spectral analysis of AGNs       (Brightman+, 2014)

Compton thick active galactic nuclei in Chandra surveys. Brightman M., Nandra K., Salvato M. Hsu L.-T., Aird J., Rangel C. <Mon. Not. R. Astron. Soc. 443, 1999 (2014)> =2014MNRAS.443.1999B 2014MNRAS.443.1999B
ADC_Keywords: Active gal. nuclei ; QSOs ; X-ray sources Keywords: galaxies: active, quasars: emission lines, X-rays: galaxies Abstract: We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the Chandra Deep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH>1024cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH >1024cm-2 and NH constrained to be above 1023.5cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10keV X-ray luminosity range of 1042-3x1045erg/s and a redshift range of z=0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model, and that this factor increases with redshift, consistent with an increase in the obscured fraction towards higher redshifts. The strong relationship between the parameters of obscuration and LX points towards an origin intrinsic to the AGN; however, the increase of the covering factor with redshift may point towards contributions to the obscuration by the host galaxy. We make NH, {GAMMA} (with uncertainties), observed X-ray fluxes and intrinsic 2-10keV luminosities for all sources analysed in this work publicly available in an online catalogue. Description: X-ray spectral analysis of all sources in this sample. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file cdfs.dat 188 549 Data for the Chandra Deep Field South aegis.dat 183 937 Data for AEGIS-XD cosmos.dat 173 1761 Data for Chandra COSMOS -------------------------------------------------------------------------------- See also: J/ApJS/184/158 : Chandra COSMOS survey I. (Elvis+, 2009) J/ApJS/201/30 : The Chandra COSMOS survey. III. (Civano+, 2012) J/MNRAS/428/3089 : X-ray properties of BzK-selected galaxies (Rangel+, 2013) Byte-by-byte Description of file: cdfs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- --- [cdfs4Ms_] 9- 11 I3 --- XID [1/571] X-ray source ID (cdfs4Ms_NNN) (1) 13- 21 F9.6 deg RAdeg Right ascension (J2000.0) of X-ray source (1) 23- 32 F10.6 deg DEdeg Declination (J2000.0) of X-ray source (1) 34- 42 F9.6 deg RAOdeg Right ascension (J2000.0) of Optical/IR counterpart (2) 44- 53 F10.6 deg DEOdeg Declination (J2000.0) of Optical/IR counterpart (2) 55- 62 F8.4 --- z ?=-99 Source redshift (2) 64- 70 F7.3 % q_z [0/101] Redshift probability (quality) (G1) 72- 76 I5 ct Xct 0.5-8keV X-ray spectral counts 78 A1 --- Mod [A-D] X-ray spectral model used (G2) 80- 88 F9.6 [cm-2] logNH log(Hydrogen column density) 90- 98 F9.6 [cm-2] b_logNH 90% lower limit on log(NH) 100-108 F9.6 [cm-2] B_logNH 90% upper limit on log(NH) 110-120 F11.8 --- Gamma X-ray power-law index Γ 122-131 F10.7 --- b_Gamma ?=0 90% lower limit on Gamma 133-142 F10.7 --- B_Gamma ?=0 90% upper limit on Gamma 143-153 F11.8 % fscat [0/100]? Scattered fraction 154 A1 --- f_fscat [n] n for not analysed 155-166 F12.9 % e_fscat [0/100]? 90% error on the scattered fraction 168-177 F10.6 [mW/m2] logFX ? log(0.5-8keV observed flux)(ergs/cm2/s) 178 A1 --- f_logFX [I] I for -∞ (FX=0) 179-187 F9.6 [10-7W] logLX ? Intrinsic rest-frame 2-10keV luminosity (log scale, ergs/s) 188 A1 --- f_logLX [I] I for -∞ (LX=0) ------------------------------------------------------------------------------ Note (1): Rangel et al. (2013MNRAS.428.3089R 2013MNRAS.428.3089R, Cat. J/MNRAS/428/3089). Note (2): from Hsu et al. (submitted). -------------------------------------------------------------------------------- Byte-by-byte Description of file: aegis.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- --- [aegis_] 7- 9 I3 --- XID [1/937] X-ray source ID, aegis_NNN (3) 11- 19 F9.5 deg RAdeg Right ascension (J2000.0) of X-ray source (3) 21- 29 F9.6 deg DEdeg Declination (J2000.0) of X-ray source (3) 31- 39 F9.5 deg RAOdeg Right ascension (J2000.0) of Optical/IR counterpart (3) 41- 49 F9.6 deg DEOdeg Declination (J2000.0) of Optical/IR counterpart (3) 51- 59 F9.7 --- z Source redshift (3) 61- 63 I3 % q_z [0/101] Redshift probability (quality) (G1) 65- 69 I5 ct Xct 0.5-8keV X-ray spectral counts 71 A1 --- Mod [A-D] X-ray spectral model used 73- 81 F9.6 [cm-2] logNH log(Hydrogen column density) 83- 91 F9.6 [cm-2] b_logNH 90% lower limit on logNH 93-101 F9.6 [cm-2] B_logNH 90% upper limit on logNH 103-112 F10.7 --- Gamma X-ray power-law index Γ 114-123 F10.7 --- b_Gamma ?=0 90% lower limit on Gamma 125-134 F10.7 --- B_Gamma ?=0 90% upper limit on Gamma 136-147 F12.9 % fscat [0/100]? Scattered fraction 149-161 F13.10 % e_fscat [0/100]? 90% error on the scattered fraction 163-173 F11.7 [mW/m2] logFX log(0.5-8keV observed flux) (ergs/cm2/s) 174-182 F9.6 [10-7W] logLX ? Intrinsic rest-frame 2-10keV luminosity (log scale, ergs/s) 183 A1 --- n_logLX [I] I for -∞ (LX=0) ------------------------------------------------------------------------------- Note (3): from Nandra et al. (submitted). ------------------------------------------------------------------------------- Byte-by-byte Description of file: cosmos.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 --- XID [1/22962] X-ray source XID (4) 7- 15 F9.5 deg RAdeg Right ascension (J2000.0) of X-ray source (4) 17- 23 F7.5 deg DEdeg Declination (J2000.0) of X-ray source (4) 25- 33 F9.5 deg RAOdeg Right ascension (J2000.0) of Optical/IR counterpart (5) 35- 41 F7.5 deg DEOdeg Declination (J2000.0) of Optical/IR counterpart (5) 43- 49 F7.3 --- z ?=-99 Source redshift (5) 51- 53 I3 % q_z [0/101] Redshift probability (quality) (G1) 55- 58 I4 ct Xct 0.5-8keV X-ray spectral counts 60 A1 --- Mod [A-D] X-ray spectral model used 62- 70 F9.6 [cm-2] logNH ? log(Hydrogen column density) 71 A1 --- n_logNH [I] I for -∞ (NH=0) 72- 80 F9.6 [cm-2] b_logNH 90% lower limit on logNH 82- 90 F9.6 [cm-2] B_logNH ? 90% upper limit on logNH 91 A1 --- nBlogNH [I] I for -∞ 92-101 F10.7 --- Gamma ? X-ray power-law index Γ 103-112 F10.7 --- b_Gamma ?=0 90% lower limit on Gamma 114-123 F10.7 --- B_Gamma ?=0 90% upper limit on Gamma 124-137 E14.9 % fscat [0/100]? Scattered fraction 138 A1 --- f_fscat [n] n for not analyzed 139-151 E13.8 % e_fscat [0/100]? 90% error on the scattered fraction 153-162 F10.6 [mW/m2] logFX ? log(0.5-8keV observed flux) (ergs/cm2/s) 163 A1 --- n_logFX [I] I for -∞ (FX=0) 164-172 F9.6 [10-7W] logLX ? Intrinsic rest-frame 2-10keV luminosity (log scale, ergs/s) 173 A1 --- n_logLX [I] I for -∞ (LX=0) -------------------------------------------------------------------------------- Note (4): from Elvis et al. (2009ApJS..184..158E 2009ApJS..184..158E, Cat. J/ApJS/184/158). Note (5): from Civano et al. (2012ApJS..201...30C 2012ApJS..201...30C, Cat. J/ApJS/201/30). -------------------------------------------------------------------------------- Global notes: Note (G1): Redshift quality: from 0=star/photometric redshift, to 101=spectroscopic redshift Note (G2): The models are: A = The torus model of Brightman & Nandra 2011 (J/MNRAS/413/1206) with a fixed opening angle of 60°, and edge on orientation, accompanied by a scattered power-law with Γscatt fixed to the value of the primary power-law. This model has four free parameters: NH, Γ, and the normalisations of the power-laws, A1 and A2 B = The torus model of Brightman & Nandra 2011 (J/MNRAS/413/1206) with a fixed opening angle of 30°, and edge on orientation, accompanied by a scattered power-law with Γscatt fixed to the value of the primary power-law. This model has four free parameters, NH, Γ, and the normalisations of the power-laws, A1 and A2 C = The spherical model of Brightman & Nandra 2011 (J/MNRAS/413/1206), a scenario in which the X-ray source is completely covered with 4π steradians of obscuring material. This model has three free parameters NH, Γ, and the normalisation of the power-laws, A1. No scattered component iw included for this model as it represents the case where there is no escape route for the primary radiation to be scattered into the line of sight. D = simple power-law model, with two free parameters: the power-law index Γ, and the normalisation, A1, representing unobscured X-ray emission. -------------------------------------------------------------------------------- Acknowledgements: Murray Brightman, murray(at)srl.caltech.edu
(End) Patricia Vannier [CDS] 05-Sep-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line