J/MNRAS/452/4070     Chemical abundances in the PN Wray16-423     (Otsuka, 2015)

Chemical abundances in the PN Wray16-423 in the Sagittarius dwarf spheroidal galaxy: constraining the dust composition. Otsuka M. <Mon. Not. R. Astron. Soc., 452, 4070-4093 (2015)> =2015MNRAS.452.4070O 2015MNRAS.452.4070O (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; Planetary nebulae ; Spectroscopy ; Abundances Keywords: ISM: abundances - dust, extinction - planetary nebulae: individual: Wray16-423 Abstract: We performed a detailed analysis of elemental abundances, dust features, and polycyclic aromatic hydrocarbons (PAHs) in the C-rich planetary nebula (PN) Wray16-423 in the Sagittarius dwarf spheroidal galaxy, based on a unique data set taken from the Subaru/HDS, MPG/ESO FEROS, HST/WFPC2, and Spitzer/IRS. We performed the first measurements of Kr, Fe, and recombination O abundance in this PN. The extremely small [Fe/H] implies that most Fe atoms are in the solid phase, considering into account the abundance of [Ar/H]. The Spitzer/IRS spectrum displays broad 16-24 µm and 30 µm features, as well as PAH bands at 6-9 and 10-14 µm. The unidentified broad 16-24 µm feature may not be related to iron sulphide (FeS), amorphous silicate, or PAHs. Using the spectral energy distribution model, we derived the luminosity and effective temperature of the central star, and the gas and dust masses. The observed elemental abundances and derived gas mass are in good agreement with asymptotic giant branch nucleosynthesis models for an initial mass of 1.90 M and a metallicity of Z=0.004. We infer that respectively about 80, 50, and 90 per cent of the Mg, S, and Fe atoms are in the solid phase. We also assessed the maximum possible magnesium sulphide (MgS) and iron-rich sulphide (Fe50S) masses and tested whether these species can produce the band flux of the observed 30 µm feature. Depending on what fraction of the sulphur is in sulphide molecules such as CS, we conclude that MgS and Fe50S could be possible carriers of the 30 µm feature in this PN. Description: Optical high-dispersion spectra were taken using the High-Dispersion Spectrograph (HDS; Noguchi et al. 2002PASJ...54..855N 2002PASJ...54..855N) attached to the Nasmyth focus of the 8.2 m Subaru Telescope on 2012 July 4 (Prop.ID: S12A-126S, PI: M. Otsuka) and 2014 July 9 (Prop.ID: S14A-174, the same PI). Optical high-dispersion spectra (3500-9200 Å) were obtained using the Fiber-fed Extended Range Optical Spectrograph (FEROS; Kaufer et al. 1999Msngr..95....8K 1999Msngr..95....8K) attached to the MPG/ESO 2.2 m Telescope, La Silla, Chile on 2013 June 18 (Prop.ID: 91.D-0055A, PI: M. Otsuka), as a follow-up to HDS observations; auroral [O II] lines, nebular [S III], [Cl IV], and [Ar III] lines, and the Paschen discontinuity were measured, and line identifications and flux measurements were cross-checked for both HDS and FEROS spectra. Objects: ---------------------------------------------------------------------------- RA (ICRS) DE Designation(s) ---------------------------------------------------------------------------- 18 55 03.1 -30 28 42 Sagittarius dwarf spheroidal galaxy = NAME SDG 19 22 10.63 -31 30 38.7 WRAY16-423 = 2MASS J19221062-3130387 ---------------------------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 51 298 Detected lines and identifications in the HDS/FEROS spectra tableb1.dat 83 46 Ionic abundances from collisionally excited lines (CELs) tableb2.dat 67 21 Ionic abundances from recombination lines (RLs) -------------------------------------------------------------------------------- See also: J/A+A/465/815 : Abundances of Sgr dSph stars (Sbordone+, 2007) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.2 0.1nm lambda(obs) [3688.46/9073.07] Observed wavelength λobs (Å) 9- 16 A8 --- Ion Ion designation 18- 24 F7.2 0.1nm lambda(lab) [3686.83/9068.6]? Laboratory wavelength λlab (Å) 26- 27 A2 --- n_lambda(lab) [BC ] Flag on lambda(lab) (1) 29 A1 --- ID Identification number (2) 31- 36 F6.3 --- f(lambda) [-0.59/0.33] Interstellar extinction function at λ (3) 38- 45 F8.3 --- I(lambda) [0.009/1062.111] De-reddened line flux (3) (G1) 47- 51 F5.3 --- dI(lambda) [0/8.96] Line flux difference δI(λ) -------------------------------------------------------------------------------- Note (1): Flag as follows: BC = BC in component 2 of C IV λ5801/11 Å means the broad component shown in Fig. 6. Note (2): For lines composed of multiple components, we list the de-reddened relative fluxes of each component, as well as the sum of these components (indicated by "T"). Note (3): The measured line fluxes in the obtained spectra were de-reddened using the following formula: I(λ)=F(λ)x10c(Hβ)(1+f(λ)), where I(λ) is the de-reddened line flux, F(λ) is the observed line flux, f(λ) is the interstellar extinction function at λ computed by the reddening law of Cardelli, Clayton & Mathis (1989ApJ...345..245C 1989ApJ...345..245C) with RV=3.1, and c(Hβ) is the reddening coefficient at Hβ. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Ion Ion designation 8- 16 F9.2 0.1nm b_lambda(lab) [3726.03/360000] Laboratory wavelength, lower value (Å) 18- 21 I4 0.1nm B_lambda(lab) [7330]? Laboratory wavelength, upper value (Å) 23- 29 E7.3 --- I(llab) [0.0109/1060] De-reddened line flux (G1) 31- 37 E7.3 --- e_I(llab) [0.00207/8.96] Uncertainty in I(llab) 39- 43 I5 K Te [10000/12800] Electron temperature 45- 49 I5 cm-3 ne [1010/11320] Electron density 51- 57 E7.3 [-] [X/H] [1.71e-09/0.000191] Ionic abundance relative to the H+ 59- 66 E8.3 [-] e_[X/H] [8.18e-11/7.3e-06] 1σ uncertainty in [X/H] 68- 74 E7.3 [-] [X/H]a [1.71e-09/0.00019] Adopted ionic abundance 76- 83 E8.3 [-] e_[X/H]a [8.18e-11/4.02e-06] Uncertainty in [X/H]a -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Ion Ion designation 8- 14 F7.2 0.1nm lambda(lab) [4072.15/6678.15] Laboratory wavelength 16- 19 A4 --- Mult Multiplet 21- 27 E7.3 --- I(llab) [0.0115/15.2] De-reddened line flux (G1) 29- 35 E7.3 --- e_I(llab) [0.00169/0.331] Uncertainty in I(llab) 37- 43 E7.3 [-] [X/H] [2.45e-05/0.0989] Ionic abundance relative to the H+ 45- 51 E7.3 [-] e_[X/H] [6.75e-06/0.0212] Uncertainty in [X/H] 53- 59 E7.3 [-] [X/H]a [2.45e-05/0.0963] Adopted ionic abundance 61- 67 E7.3 [-] e_[X/H]a [6.75e-06/0.0094] Uncertainty in [X/H]a -------------------------------------------------------------------------------- Global notes: Note (G1): Relative to [I(Hβ)=100]. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Tiphaine Pouvreau [CDS] 19-Dec-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line