J/MNRAS/454/2292 H3O+ and D3O+ rotational transitions (Owens+, 2015)
Accurate prediction of H3O+ and D3O+ sensitivity coefficients to probe
a variable proton-to-electron mass ratio.
Owens A., Yurchenko S.N., Polyansky O.L., Ovsyannikov R.I., Thiel W.,
Spirko V.
<Mon. Not. R. Astron. Soc., 454, 2292-2298 (2015)>
=2015MNRAS.454.2292O 2015MNRAS.454.2292O (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Interstellar medium
Keywords: molecular data - cosmological parameters - infrared: ISM -
submillimetre: ISM
Abstract:
The mass sensitivity of the vibration-rotation-inversion transitions
of H316O+, H318O+, and D316O+ is investigated
variationally using the nuclear motion program trove (Yurchenko, Thiel
& Jensen 2007JMoSp.245..126Y 2007JMoSp.245..126Y). The calculations utilize new high-level
ab initio potential energy and dipole moment surfaces. Along with the
mass dependence, frequency data and Einstein A coefficients are computed
for all transitions probed. Particular attention is paid to the
Δ|k|=3 and Δ|k-l|=3 transitions comprising the accidentally
coinciding |J, K=0, v2=0+> and |J, K=3, v2=0-> rotation-inversion
energy levels. The newly computed probes exhibit sensitivities comparable
to their ammonia and methanol counterparts, thus demonstrating their
potential for testing the cosmological stability of the proton-to-electron
mass ratio. The theoretical trove results are in close agreement with
sensitivities obtained using the non-rigid and rigid inverter approximate
models, confirming that the ab initio theory used in the present study
is adequate.
Description:
Given the astronomical relevance of H3O+, and a good representative
set of accurately measured experimental data (Uy, White & Oka
1997JMoSp.183..240U 1997JMoSp.183..240U; Araki, Ozeki & Saito 1999, Mol. Phys., 97, 177);
Tang & Oka 1999JMoSp.196..120T 1999JMoSp.196..120T ; Furuya & Saito 2005A&A...441.1039F 2005A&A...441.1039F;
Yu et al. 2009ApJS..180..119Y 2009ApJS..180..119Y; Yu & Pearson 2014ApJ...786..133Y 2014ApJ...786..133Y), we find
it worthwhile to carry out a comprehensive study of hydronium, H316O+
(also referred to as H3O+), and its two symmetric top isotopologues,
H318O+ and D316O+. To do this we employ a highly accurate
variational approach, which was recently applied to ammonia (Owens et al.
2015MNRAS.450.3191O 2015MNRAS.450.3191O). Like NH3 (Jansen, Bethlem & Ubachs
2014JChPh.140a0901J 2014JChPh.140a0901J; Spirko 2014, J. Phys. Chem. Lett., 5, 919;
Owens et al. 2015MNRAS.450.3191O 2015MNRAS.450.3191O), there is a possibility to find
transitions with strongly anomalous sensitivities caused by the
Δk=±3 interactions (see Papousek et al. 1986JMoSt.141..361P 1986JMoSt.141..361P),
which have not yet been considered.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 33 78 Inversion frequencies of H316O+ in the
ground vibrational state
table2.dat 33 78 Inversion frequencies of H318O+ in the
ground vibrational state
table3.dat 87 22 The rotation-inversion frequencies of
H316O+ in the ground vibrational state
table4.dat 87 27 The rotation-inversion frequencies of
H318O+ in the ground vibrational state
table5.dat 87 29 The frequencies of the strongest "forbidden"
rotation-inversion transitions in the ground
vibrational state of H316O+
table6.dat 94 43 *Combination differences of the "forbidden"
and allowed transitions between the ν3 and
ground vibrational states in H316O+
table7.dat 87 27 *The "forbidden" combination differences of the
H316O+ and H318O+ ground vibrational
state transitions
table8.dat 33 88 Inversion frequencies of D316O+ in the
ground vibrational state
table9.dat 87 34 The frequencies of the rotation-inversion
transitions in the ground vibrational state of
D316O+
table10.dat 87 13 The frequencies of the strongest "forbidden"
rotation-inversion transitions in the ground
vibrational state of D316O+
table11.dat 87 7 The "forbidden" combination differences of
the D316O+ ground vibrational state
transitions
--------------------------------------------------------------------------------
Note on table6.dat:
"Forbidden" (Δ|k-l|=3) and allowed (Δ|k-l|=0) transitions.
Note on table7.dat :
From the first row to the 22nd row, data for the H316O+ ground
vibrational state transitions. From the 23rd to the end, data for
the H318O+ ground vibrational state transitions.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat table2.dat table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- J [1/12] Rotational quantum number J
4- 5 I2 --- K [-3/12] Quantum number K
7- 17 F11.4 GHz Freq Calculated inversion frequency (νcalc)
19- 26 E8.4 s-1 A Einstein A-coefficient
28- 33 F6.3 --- T Sensitivity coefficient of transition
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table[34579].dat table1[01].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Gamma' Symmetry level, upper state Γ'
7- 10 A4 --- p' Upper state parity
12- 13 I2 --- J' [0/12] Upper state rotational quantum number J
15- 16 I2 --- K' [-3/7] Upper state quantum number K
18- 22 A5 --- Gamma" Symmetry level, ground state Γ"
24- 27 A4 --- p" Ground state parity
29- 30 I2 --- J" [0/11] Ground state rotational quantum number J
32- 33 I2 --- K" [-3/8] Ground state quantum number K
35- 46 F12.3 MHz FreqCalc Calculated inversion frequency (νcalc)
47 A1 --- n_FreqCalc [a] Note on FreqCalc (1)
49- 59 F11.3 MHz FreqExp ? Experimental inversion frequency (νexp)
(only in tables 3, 7 and 11) (2)
60- 62 A3 --- n_FreqExp [d,e,f,g,h ] Note on FreqExp (3)
64- 71 E8.4 s-1 A ? Einstein A-coefficient (not in tables 7
and 11)
73- 79 F7.3 --- Ttheo ? Sensitivity coefficient of transition
calculated using theoretical frequency
(only in tables 3, 7 and 11)
81- 87 F7.3 --- Texp ? Sensitivity coefficient of transition
calculated using experimental frequency
--------------------------------------------------------------------------------
Note (1): Note as follows:
a = Experimental value of 798713.814 MHz measured in Furuya & Saito
(2005A&A...441.1039F 2005A&A...441.1039F).
Note (2): The experimental frequencies have been taken from:
- Yu & Pearson (2014ApJ...786..133Y 2014ApJ...786..133Y) in table3;
- Tang & Oka (1999JMoSp.196..120T 1999JMoSp.196..120T) and Uy et al. (1997JMoSp.183..240U 1997JMoSp.183..240U) in
table7;
- Araki et al. (1999, Mol. Phys., 97, 177) in table11.
Note (3): Note as follows:
d = Also observed astronomically in van der Tak et al. (2006A&A...454L..99V 2006A&A...454L..99V);
e = Also observed astronomically in Wootten et al. (1991ApJ...380L..79W 1991ApJ...380L..79W);
f = Also observed astronomically in Phillips et al. (1992ApJ...399..533P 1992ApJ...399..533P);
g = Astronomical observation from Goicoechea & Cernicharo
(2001ApJ...554L.213G 2001ApJ...554L.213G);
h = Astronomical observation from Gonzalez-Alfonso et al.
(2013A&A...550A..25G 2013A&A...550A..25G).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- TransAl Allowed transition (1)
15- 22 F8.3 cm-1 FreqCalc1 Calculated inversion frequency (νcalc)
24- 31 F8.3 cm-1 FreqExp1 ? Experimental inversion frequency (νexp)
(2)
33- 40 E8.4 s-1 A1 Einstein A-coefficient
42- 54 A13 --- TransFor "Forbidden" transition (1)
56- 63 F8.3 cm-1 FreqCalc2 Calculated inversion frequency (νcalc)
65- 72 F8.3 cm-1 FreqExp2 ? Experimental inversion frequency (νexp)
(2)
74- 81 E8.4 s-1 A2 Einstein A-coefficient
83- 88 F6.4 cm-1 CD Combination differences (CD)
90- 94 F5.3 cm-1 CDexp ? Experimental CD data
--------------------------------------------------------------------------------
Note (1): Transitions with ΔJ=-1, 0, +1 are described using the labels
P, Q, R respectively, whilst the superscript o, p, q, r, s, t, u
notation corresponds to transitions with ΔK=-2, -1, 0, +1, +2,
+3, +4, respectively. All transitions are between states of A'2 and
A"2 symmetry, where +(-) -> +(-) are allowed, and +(-) -> -(+) are
forbidden.
Note (2): Experimental frequencies from Tang & Oka (1999JMoSp.196..120T 1999JMoSp.196..120T) and
Uy et al. (1997JMoSp.183..240U 1997JMoSp.183..240U).
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Tiphaine Pouvreau [CDS] 17-Jan-2018