J/MNRAS/454/3771  Simulated spectral evolution of black holes   (Pacucci+, 2015)

Shining in the dark: the spectral evolution of the first black holes. Pacucci F., Ferrara A., Volonteri M., Dubus G. <Mon. Not. R. Astron. Soc., 454, 3771-3777 (2015)> =2015MNRAS.454.3771P 2015MNRAS.454.3771P (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Spectroscopy Keywords: accretion, accretion discs - black hole physics - radiative transfer - quasars: supermassive black holes - dark ages, reionization, first stars - early Universe Abstract: Massive black hole (MBH) seeds at redshift z≳10 are now thought to be key ingredients to explain the presence of the supermassive (109-10M) black holes in place <1Gyr after the big bang. Once formed, massive seeds grow and emit copious amounts of radiation by accreting the left-over halo gas; their spectrum can then provide crucial information on their evolution. By combining radiation-hydrodynamic and spectral synthesis codes, we simulate the time-evolving spectrum emerging from the host halo of a MBH seed with initial mass 105M, assuming both standard Eddington-limited accretion, or slim accretion discs, appropriate for super-Eddington flows. The emission occurs predominantly in the observed infrared-submm (1-1000µm) and X-ray (0.1-100keV) bands. Such signal should be easily detectable by JWST around ∼1µm up to z∼25, and by ATHENA (between 0.1 and 10keV, up to z∼15). Ultra-deep X-ray surveys like the Chandra Deep Field South could have already detected these systems up to z∼15. Based on this, we provide an upper limit for the z≳6 MBH mass density of ρ{blackdot}≲2.5x102M/Mpc3 assuming standard Eddington-limited accretion. If accretion occurs in the slim disc mode the limits are much weaker, ρ{blackdot}≲7.6x103M/Mpc3 in the most constraining case. Description: The present work is based on radiation-hydrodynamic simulations post-processed with cloudy, a spectral synthesis code (Ferland et al., 2013RMxAA..49..137F 2013RMxAA..49..137F). We provided a general picture of the interconnection between the main accretion mode at work in the high-redshift Universe and the black hole mass density. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file hdp.dat 107 5125 Standard accretion high-density profile (HDP) spectrum hdp.pdf 512 204 Standard accretion HDP spectrum hdp_sd.dat 107 5125 Slim disc accretion high-density profile (HDP) spectrum hdp_sd.pdf 512 254 Slim disc accretion HDP spectrum ldp.dat 107 5125 Standard accretion low-density profile (LDP) spectrum ldp.pdf 512 225 Standard accretion LDP spectrum ldp_sd.dat 107 5125 Slim disc accretion low-density profile (LDP) spectrum ldp_sd.pdf 512 231 Slim disc accretion LDP spectrum -------------------------------------------------------------------------------- Byte-by-byte Description of file: hdp.dat hdp_sd.dat ldp.dat ldp_sd.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 E11.6 keV E Energy (z=9) 17- 27 E11.6 mW/m2 nufnu0 Source νfν flux density 33- 43 E11.6 mW/m2 nufnu1 Time 1 νfν flux density 49- 59 E11.6 mW/m2 nufnu2 Time 2 νfν flux density 65- 75 E11.6 mW/m2 nufnu3 Time 3 νfν flux density 81- 91 E11.6 mW/m2 nufnu4 Time 4 νfν flux density 97-107 E11.6 mW/m2 nufnu5 Time 5 νfν flux density -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 21-Jul-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line