J/MNRAS/454/3771 Simulated spectral evolution of black holes (Pacucci+, 2015)
Shining in the dark: the spectral evolution of the first black holes.
Pacucci F., Ferrara A., Volonteri M., Dubus G.
<Mon. Not. R. Astron. Soc., 454, 3771-3777 (2015)>
=2015MNRAS.454.3771P 2015MNRAS.454.3771P (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Spectroscopy
Keywords: accretion, accretion discs - black hole physics - radiative transfer -
quasars: supermassive black holes -
dark ages, reionization, first stars - early Universe
Abstract:
Massive black hole (MBH) seeds at redshift z≳10 are now thought to be
key ingredients to explain the presence of the supermassive
(109-10M☉) black holes in place <1Gyr after the big bang. Once
formed, massive seeds grow and emit copious amounts of radiation by
accreting the left-over halo gas; their spectrum can then provide
crucial information on their evolution. By combining
radiation-hydrodynamic and spectral synthesis codes, we simulate the
time-evolving spectrum emerging from the host halo of a MBH seed with
initial mass 105M☉, assuming both standard Eddington-limited
accretion, or slim accretion discs, appropriate for super-Eddington
flows. The emission occurs predominantly in the observed
infrared-submm (1-1000µm) and X-ray (0.1-100keV) bands. Such signal
should be easily detectable by JWST around ∼1µm up to z∼25, and by
ATHENA (between 0.1 and 10keV, up to z∼15). Ultra-deep X-ray surveys
like the Chandra Deep Field South could have already detected these
systems up to z∼15. Based on this, we provide an upper limit for the
z≳6 MBH mass density of ρ{blackdot}≲2.5x102M☉/Mpc3
assuming standard Eddington-limited accretion. If accretion occurs in
the slim disc mode the limits are much weaker,
ρ{blackdot}≲7.6x103M☉/Mpc3 in the most constraining
case.
Description:
The present work is based on radiation-hydrodynamic simulations
post-processed with cloudy, a spectral synthesis code (Ferland et al.,
2013RMxAA..49..137F 2013RMxAA..49..137F).
We provided a general picture of the interconnection between the main
accretion mode at work in the high-redshift Universe and the black
hole mass density.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
hdp.dat 107 5125 Standard accretion high-density profile (HDP)
spectrum
hdp.pdf 512 204 Standard accretion HDP spectrum
hdp_sd.dat 107 5125 Slim disc accretion high-density profile (HDP)
spectrum
hdp_sd.pdf 512 254 Slim disc accretion HDP spectrum
ldp.dat 107 5125 Standard accretion low-density profile (LDP)
spectrum
ldp.pdf 512 225 Standard accretion LDP spectrum
ldp_sd.dat 107 5125 Slim disc accretion low-density profile (LDP)
spectrum
ldp_sd.pdf 512 231 Slim disc accretion LDP spectrum
--------------------------------------------------------------------------------
Byte-by-byte Description of file: hdp.dat hdp_sd.dat ldp.dat ldp_sd.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 E11.6 keV E Energy (z=9)
17- 27 E11.6 mW/m2 nufnu0 Source νfν flux density
33- 43 E11.6 mW/m2 nufnu1 Time 1 νfν flux density
49- 59 E11.6 mW/m2 nufnu2 Time 2 νfν flux density
65- 75 E11.6 mW/m2 nufnu3 Time 3 νfν flux density
81- 91 E11.6 mW/m2 nufnu4 Time 4 νfν flux density
97-107 E11.6 mW/m2 nufnu5 Time 5 νfν flux density
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 21-Jul-2016