J/MNRAS/462/1329    Gas infall in  disc galaxy models             (Molla+, 2016)

The role of gas infall in the evolution of disc galaxies. Molla M., Diaz A.I., Gibson B.K., Cavichia O., Lopez-Sanchez A.-R. <Mon. Not. R. Astron. Soc., 462, 1329-1340 (2016)> =2016MNRAS.462.1329M 2016MNRAS.462.1329M (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Galaxies, optical Keywords: galaxies: formation - galaxies: ISM - galaxies: spiral Abstract: Spiral galaxies are thought to acquire their gas through a protracted infall phase resulting in the inside-out growth of their associated discs. For field spirals, this infall occurs in the lower density environments of the cosmic web. The overall infall rate, as well as the galactocentric radius at which this infall is incorporated into the star-forming disc, plays a pivotal role in shaping the characteristics observed today. Indeed, characterizing the functional form of this spatio-temporal infall in situ is exceedingly difficult, and one is forced to constrain these forms using the present day state of galaxies with model or simulation predictions. We present the infall rates used as input to a grid of chemical evolution models spanning the mass spectrum of discs observed today. We provide a systematic comparison with alternate analytical infall schemes in the literature, including a first comparison with cosmological simulations. Identifying the degeneracies associated with the adopted infall rate prescriptions in galaxy models is an important step in the development of a consistent picture of disc galaxy formation and evolution. Description: These tables give the information shown in the published paper as table format or as included in the different figures. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 111 16 Characteristics of the theoretical galaxies modeled (Table 1 in the manuscript) table2.dat 48 308 Mass distributions used as inputs of models (corresponding to Fig.1 of the manuscript) table3.dat 61 22224 Time evolution of infall, effective radius and mass in the disc for each galaxy as a whole table4.dat 61 427812 Time evolution of infall, and mass in the disk for each radial region of each galaxy table5.dat 23 1388 Relation time-redshift used in the work table6.dat 74 5 Parameters to the fit equations y=a+bx+cx2+dx3+ex4 with x=logMD of results in Fig.8 and Fig.12 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used as name for each galaxy 8- 17 E10.4 Msun Mvir The virial mass in the protohalo of each galaxy 20- 29 E10.4 Msun MD The barionic mass expected in the disk at the end of the evolution as obtained from the SHMR 32- 41 E10.4 Msun MB The bulge mass in each galaxy 44- 50 F7.3 kpc Rvir The virial radius for each galaxy at the end of the evolution 53- 57 F5.3 kpc RD The expected scale length of the disc at the end of the evolution 60- 65 F6.3 kpc Ropt The expected optical radius of the disc at the end of the evolution 68- 73 F6.3 kpc Rcar The characteristic radius of the disc used for normalization purposes 76- 82 F7.3 Gyr tauc The collapse time scale for the characteristic radius 85- 91 F7.3 km/s Vrot The rotation velocity at the characteristic radius 94-100 F7.3 km/s sigma0 The dispersion velocity of the bulge 103-107 F5.3 kpc ReffB The effective radius of the bulge 110-111 I2 -- NR Number of computed radial regions in each galaxy -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used as name for each galaxy 8- 12 F5.2 kpc R The galactocentric distance of each radial region (Radius) 16- 24 E9.3 Msun Mtot The total mass in each radius as obtained of the rotation curve 28- 36 E9.3 Msun DMtot The mass included in each radial region =Mtot(R)-Mtot(R-1) 40- 48 E9.3 Gyr tau(R) The collapse time-scale for each radial region -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used as name for each galaxy 9- 19 E11.5 Gyr Time Evolutionary time from time=0 until time=13.2Gyr 23- 33 E11.5 kpc Reff The radius where the mass of the disc reaches the half value of the total in the disc in each time 37- 47 E11.5 Msun/yr dM/dt The total infall rate from the protohalo over the disc in each time 51- 61 E11.5 Msun MD The barionic mass in the disc in each time -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used as name for each galaxy 9- 19 E11.5 Gyr Time Evolutionary time from time=0 until time=13.2 Gyr 23- 33 E11.5 kpc R The galactocentric radius of each radial region 37- 47 E11.5 Msun/yr dM/dt The infall rate from the protohalo over the disc in each time and radial region 51- 61 E11.5 Msun MD The barionic mass in each time and in each radial region of the disc -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 E11.5 Gyr Time Evolutionary time 13- 23 E11.5 --- z Redshift associated to each time following MacDonald (2006, Found. Phys. Lett. 19, 631) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 26 A26 --- Param Parameter that it is fitted to a function of logMD 27- 36 F10.6 --- a Parameter a for y=a+bx+cx2+dx3+ex4 38- 46 F9.6 --- b Parameter b for y=a+bx+cx2+dx3+ex4 48- 56 F9.6 --- c ? Parameter c for y=a+bx+cx2+dx3+ex4 58- 65 F8.6 --- d ? Parameter d for y=a+bx+cx2+dx3+ex4 67- 74 F8.5 --- e ? Parameter e for y=a+bx+cx2+dx3+ex4 -------------------------------------------------------------------------------- Acknowledgements: Mercedes Molla, mercedes(at)ciemat.es
(End) Patricia Vannier [CDS] 12-Oct-2017
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line