J/MNRAS/462/1329 Gas infall in disc galaxy models (Molla+, 2016)
The role of gas infall in the evolution of disc galaxies.
Molla M., Diaz A.I., Gibson B.K., Cavichia O., Lopez-Sanchez A.-R.
<Mon. Not. R. Astron. Soc., 462, 1329-1340 (2016)>
=2016MNRAS.462.1329M 2016MNRAS.462.1329M (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Galaxies, optical
Keywords: galaxies: formation - galaxies: ISM - galaxies: spiral
Abstract:
Spiral galaxies are thought to acquire their gas through a protracted
infall phase resulting in the inside-out growth of their associated
discs. For field spirals, this infall occurs in the lower density
environments of the cosmic web. The overall infall rate, as well as
the galactocentric radius at which this infall is incorporated into
the star-forming disc, plays a pivotal role in shaping the
characteristics observed today. Indeed, characterizing the functional
form of this spatio-temporal infall in situ is exceedingly difficult,
and one is forced to constrain these forms using the present day state
of galaxies with model or simulation predictions. We present the
infall rates used as input to a grid of chemical evolution models
spanning the mass spectrum of discs observed today. We provide a
systematic comparison with alternate analytical infall schemes in the
literature, including a first comparison with cosmological
simulations. Identifying the degeneracies associated with the adopted
infall rate prescriptions in galaxy models is an important step in the
development of a consistent picture of disc galaxy formation and
evolution.
Description:
These tables give the information shown in the published paper as
table format or as included in the different figures.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 111 16 Characteristics of the theoretical galaxies
modeled (Table 1 in the manuscript)
table2.dat 48 308 Mass distributions used as inputs of models
(corresponding to Fig.1 of the manuscript)
table3.dat 61 22224 Time evolution of infall, effective radius and
mass in the disc for each galaxy as a whole
table4.dat 61 427812 Time evolution of infall, and mass in the disk
for each radial region of each galaxy
table5.dat 23 1388 Relation time-redshift used in the work
table6.dat 74 5 Parameters to the fit equations
y=a+bx+cx2+dx3+ex4 with x=logMD of
results in Fig.8 and Fig.12
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used
as name for each galaxy
8- 17 E10.4 Msun Mvir The virial mass in the protohalo of each galaxy
20- 29 E10.4 Msun MD The barionic mass expected in the disk at the
end of the evolution as obtained from the SHMR
32- 41 E10.4 Msun MB The bulge mass in each galaxy
44- 50 F7.3 kpc Rvir The virial radius for each galaxy at the end
of the evolution
53- 57 F5.3 kpc RD The expected scale length of the disc
at the end of the evolution
60- 65 F6.3 kpc Ropt The expected optical radius of the disc
at the end of the evolution
68- 73 F6.3 kpc Rcar The characteristic radius of the disc
used for normalization purposes
76- 82 F7.3 Gyr tauc The collapse time scale for the
characteristic radius
85- 91 F7.3 km/s Vrot The rotation velocity at the characteristic
radius
94-100 F7.3 km/s sigma0 The dispersion velocity of the bulge
103-107 F5.3 kpc ReffB The effective radius of the bulge
110-111 I2 -- NR Number of computed radial regions in each
galaxy
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used
as name for each galaxy
8- 12 F5.2 kpc R The galactocentric distance of each radial
region (Radius)
16- 24 E9.3 Msun Mtot The total mass in each radius as obtained
of the rotation curve
28- 36 E9.3 Msun DMtot The mass included in each radial region
=Mtot(R)-Mtot(R-1)
40- 48 E9.3 Gyr tau(R) The collapse time-scale for each radial
region
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used as
name for each galaxy
9- 19 E11.5 Gyr Time Evolutionary time from time=0 until
time=13.2Gyr
23- 33 E11.5 kpc Reff The radius where the mass of the disc reaches
the half value of the total in the disc in
each time
37- 47 E11.5 Msun/yr dM/dt The total infall rate from the protohalo over
the disc in each time
51- 61 E11.5 Msun MD The barionic mass in the disc in each time
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.2 [Msun] logMvir The virial mass in logarithmic scale used as
name for each galaxy
9- 19 E11.5 Gyr Time Evolutionary time from time=0 until
time=13.2 Gyr
23- 33 E11.5 kpc R The galactocentric radius of each radial
region
37- 47 E11.5 Msun/yr dM/dt The infall rate from the protohalo over the
disc in each time and radial region
51- 61 E11.5 Msun MD The barionic mass in each time and in
each radial region of the disc
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 E11.5 Gyr Time Evolutionary time
13- 23 E11.5 --- z Redshift associated to each time following
MacDonald (2006, Found. Phys. Lett. 19, 631)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 26 A26 --- Param Parameter that it is fitted to a function of logMD
27- 36 F10.6 --- a Parameter a for y=a+bx+cx2+dx3+ex4
38- 46 F9.6 --- b Parameter b for y=a+bx+cx2+dx3+ex4
48- 56 F9.6 --- c ? Parameter c for y=a+bx+cx2+dx3+ex4
58- 65 F8.6 --- d ? Parameter d for y=a+bx+cx2+dx3+ex4
67- 74 F8.5 --- e ? Parameter e for y=a+bx+cx2+dx3+ex4
--------------------------------------------------------------------------------
Acknowledgements:
Mercedes Molla, mercedes(at)ciemat.es
(End) Patricia Vannier [CDS] 12-Oct-2017