J/MNRAS/467/3140 Galaxies angular momentum evolution (Swinbank+, 2017)
Angular momentum evolution of galaxies over the past 10 Gyr: a MUSE and KMOS
dynamical survey of 400 star-forming galaxies from z = 0.3 to 1.7.
Swinbank A.M., Harrison C.M., Trayford J., Schaller M., Smail I.,
Schaye J., Theuns T., Smit R., Alexander D.M., Bacon R., Bower R.G.,
Contini T., Crain R.A., De Breuck C., Decarli R., Epinat B., Fumagalli M.,
Furlong M., Galametz A., Johnson H.L., Lagos C., Richard J., Vernet J.,
Sharples R.M., Sobral D., Stott J.P.
<Mon. Not. R. Astron. Soc., 467, 3140-3159 (2017)>
=2017MNRAS.467.3140S 2017MNRAS.467.3140S (SIMBAD/NED BibCode)
ADC_Keywords: Galaxy catalogs ; Redshifts ; Velocity dispersion
Keywords: galaxies: evolution - galaxies: high-redshift
Abstract:
We present a MUSE (Multi-Unit Spectroscopic Explorer) and KMOS (K-band
Multi-Object Spectrograph) dynamical study 405 star-forming galaxies at
redshift z=0.28-1.65 (median redshift =0.84). Our sample is
representative of the star-forming 'main sequence', with star
formation rates of SFR=0.1-30M☉/yr and stellar masses
M*=108-1011M☉. For 49±4 per cent of our sample, the
dynamics suggest rotational support, 24±3 per cent are unresolved
systems and 5±2 per cent appear to be early-stage major mergers with
components on 8-30kpc scales. The remaining 22±5 per cent appear to
be dynamically complex, irregular (or face-on systems). For galaxies
whose dynamics suggest rotational support, we derive
inclination-corrected rotational velocities and show that these
systems lie on a similar scaling between stellar mass and specific
angular momentum as local spirals with j*=J/M*∝M*2/3 but
with a redshift evolution that scales as j*∝M*2/3(1+z)-1.
We also identify a correlation between specific angular momentum and
disc stability such that galaxies with the highest specific angular
momentum (log(j*/M*2/3)>2.5) are the most stable, with Toomre
Q=1.10±0.18, compared to Q=0.53±0.22 for galaxies with
log(j*/M*2/3)<2.5. At a fixed mass, the Hubble Space Telescope
morphologies of galaxies with the highest specific angular momentum
resemble spiral galaxies, whilst those with low specific angular
momentum are morphologically complex and dominated by several bright
star-forming regions. This suggests that angular momentum plays a
major role in defining the stability of gas discs: at z∼1, massive
galaxies that have discs with low specific angular momentum are
globally unstable, clumpy and turbulent systems. In contrast, galaxies
with high specific angular momentum have evolved into stable discs
with spiral structure where star formation is a local (rather than
global) process.
Description:
The observations for this programme were acquired from a series of
programmes (commissioning, guaranteed time and open-time projects)
with the new MUSE and KMOS on the ESO Very Large Telescope (VLT).
Exploiting MUSE and KMOS observations, we study the dynamics of 405
star-forming galaxies across the redshift range z=0.28-1.65, with
a median redshift of z=0.84.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 143 371 Galaxy properties
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 14 A14 --- ID Name
16- 17 I2 h RAh Right ascension (J2000)
19- 20 I2 min RAm Right ascension (J2000)
22- 27 F6.3 s RAs Right ascension (J2000)
29 A1 --- DE- Declination (J2000)
30- 31 I2 deg DEd Declination (J2000)
33- 34 I2 arcmin DEm Declination (J2000)
36- 40 F5.2 arcsec DEs Declination (J2000)
42- 47 F6.4 --- z Redshift
49- 53 F5.2 mag Vmag ? V magnitude (AB)
55- 59 F5.2 mag Kmag ? K magnitude (AB)
61- 65 F5.1 10-20W/m2 f(neb) Nebular emission line flux ([OII] in the
case of MUSE and Hα for KMOS)
67- 70 F4.2 arcsec rh* Deconvolved continuum emission half-light
radius
72- 75 F4.2 arcsec e_rh* rms uncertainty on rh*
77- 80 F4.2 arcsec rhneb Nnebular emission half-light radius
82- 85 F4.2 arcsec e_rhneb rms uncertainty on rhneb
87- 92 F6.2 mag Hmag ? Absolute H magnitude
94- 98 F5.2 [Msun] logM* ? Stellar mass
100-102 I3 km/s sigmagal ? Galaxy-integrated velocity dispersion as
measured from the one-dimensional spectrum
104-105 I2 km/s e_sigmagal ? rms uncertainty on sigmagal
107-108 I2 km/s sigmaint ? Average intrinsic velocity dispersion
within the galaxy (after correcting for
beam smearing effects)
110-111 I2 km/s e_sigmaint ? rms uncertainty on sigmaint
113-115 I3 km/s V(3Rd) ? Observed velocity at 3Rd
117-118 I2 km/s e_V(3Rd) ? rms uncertainty on V(3Rd)
120-121 I2 deg inc ? Disk inclination
123-124 I2 deg e_inc ? rms uncertainty on inc
126-128 F3.1 mag Av ? Reddening
130-133 I4 km/s.kpc j* ? Angular momentum
135-137 I3 km/s.kpc e_j* ? rms uncertainty on j*
139-141 I3 Msun/yr SFR ? Star-formation rate (1)
143 A1 --- Class [CDIM] Class (2)
--------------------------------------------------------------------------------
Note (1): measured from the [OII] flux with SFR=0.8*10-41L[OII]erg/s and
correcting for dust reddening using the Calzetti reddening law.
Note (2): Class as follows:
C = unresolved (compact)
D = rotationnally supported (disk)
I = Irregular
M = Major mergers
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 28-Nov-2019