J/MNRAS/468/3965    SAMI Galaxy Survey. Gas surface densities (Federrath+, 2017)

The SAMI Galaxy Survey: a new method to estimate molecular gas surface densities from star formation rates. Federrath C., Salim D.M., Medling A.M., Davies R.L., Yuan T., Bian F., Groves B.A., Ho I.-T., Sharp R., Kewley L.J., Sweet S.M., Richards S.N., Bryant J.J., Brough S., Croom S., Scott N., Lawrence J., Konstantopoulos I., Goodwin M. <Mon. Not. R. Astron. Soc., 468, 3965-3978 (2017)> =2017MNRAS.468.3965F 2017MNRAS.468.3965F (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Star Forming Region ; Morphology Keywords: turbulence - techniques: spectroscopic - stars: formation - galaxies: ISM - galaxies: star formation - galaxies: structure Abstract: Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gas (Σgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR=0.005-1.5M/yr/kpc2 and M=18-130, we predict Σgas=7-200M/pc2 in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas. Description: We presented a new method to estimate the molecular gas column density (Σgas) of a galaxy using only optical IFS data, by inverting the star formation relation derived in Salim et al., 2015ApJ...806L..36S 2015ApJ...806L..36S. We apply our new method to estimate Σgas for star-forming and composite/AGN/shock galaxies classified and observed in the SAMI Galaxy Survey internal data release version 0.9. The SAMI (Croom et al., 2012MNRAS.421..872C 2012MNRAS.421..872C). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1a.dat 101 219 Spaxel-averaged physical parameters required to derive an estimate of the molecular gas surface density Σgas, star-forming classified galaxies tablea1b.dat 100 41 Spaxel-averaged physical parameters required to derive an estimate of the molecular gas surface density Σgas, composite/AGN/shock classified galaxies -------------------------------------------------------------------------------- See also: J/MNRAS/452/2087 : Galaxy And Mass Assembly (GAMA): DR2 (Liske+, 2015) Byte-by-byte Description of file: tablea1a.dat tablea1b.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- GAMA GAMA identification number 8- 12 F5.3 --- z Redshift 14- 17 F4.2 --- eps Ellipticity 19- 21 I3 --- Nspax Number of valid spaxels for gas column density estimate 23- 25 I3 pc Lspax Linear size of each spaxel 27- 32 F6.4 Msun/yr/kpc+2 SSFR Spaxel-averaged ΣSFR 34- 39 F6.4 Msun/yr/kpc+2 e_SSFR rms uncertainty on SSFR 41- 43 I3 --- M Spaxel-averaged turbulent Mach number 45- 46 I2 --- e_M rms uncertainty on M 48- 51 F4.1 10-24g/cm3 rho Spaxel-averaged gas volume density 53- 56 F4.1 10-24g/cm3 e_rho rms uncertainty on rho 58- 61 F4.1 Myr tff Spaxel-averaged local freefall time 63- 66 F4.1 Myr e_tff rms uncertainty on tff 68- 72 F5.1 Msun/yr/kpc+2 Sgas/tm Spaxel-averaged multi-freefall gas consumption rate, (Σgas/t)multi-ff 74- 77 F4.1 Msun/yr/kpc+2 e_Sgas/tm rms uncertainty on Sgas/tm 79- 83 F5.2 Msun/yr/kpc+2 Sgas/ts Spaxel-averaged single-freefall gas consumption rate, (Σgas/t)single-ff 85- 89 F5.2 Msun/yr/kpc+2 e_Sgas/ts rms uncertainty on Sgas/ts 91- 95 F5.1 Msun/pc2 Sgas Spaxel-averaged molecular gas surface density, Σgas 97-101 F5.1 Msun/pc2 e_Sgas rms uncertainty on Sgas -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 16-Mar-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line