J/MNRAS/471/1766 High-redshift AGN feedback in SZ clusters (Birzan+, 2017)
A study of high-redshift AGN feedback in SZ cluster samples.
Birzan L., Rafferty D.A., Bruggen M., Intema H.T.
<Mon. Not. R. Astron. Soc., 471, 1766-1787 (2017)>
=2017MNRAS.471.1766B 2017MNRAS.471.1766B (SIMBAD/NED BibCode)
ADC_Keywords: Clusters, galaxy ; Active gal. nuclei ; Radio sources ;
X-ray sources
Keywords: galaxies: active - galaxies: clusters: general -
galaxies: clusters: intracluster medium
galaxies: elliptical and lenticular, cD - radio continuum: general -
X-rays: galaxies: clusters
Abstract:
We present a study of active galactic nucleus (AGN) feedback at higher
redshifts (0.3<z<1.2) using Sunyaev-Zel'dovich selected samples of
clusters from the South Pole Telescope and Atacama Cosmology Telescope
surveys. In contrast to studies of nearby systems, we do not find a
separation between cooling flow (CF) clusters and non-CF clusters
based on the radio luminosity of the central radio source (cRS). This
lack may be due to the increased incidence of galaxy-galaxy mergers at
higher redshift that triggers AGN activity. In support of this
scenario, we find evidence for evolution in the radio-luminosity
function of the cRS, while the lower luminosity sources do not evolve
much, the higher luminosity sources show a strong increase in the
frequency of their occurrence at higher redshifts. We interpret this
evolution as an increase in high-excitation radio galaxies (HERGs) in
massive clusters at z>0.6, implying a transition from HERG-mode
accretion to lower power low-excitation radio galaxy (LERG)-mode
accretion at intermediate redshifts. Additionally, we use local
radio-to-jet power scaling relations to estimate feedback power and
find that half of the CF systems in our sample probably have enough
heating to balance cooling. However, we postulate that the local
relations are likely not well suited to predict feedback power in
high-luminosity HERGs, as they are derived from samples composed
mainly of lower luminosity LERGs.
Description:
Our sample consists of 99 systems with archival Chandra data from the
SZ surveys of the southern and equatorial sky (SPT and ACT; Carlstrom
et al., 2011PASP..123..568C 2011PASP..123..568C; Fowler et al., 2007, Appl. Opt., 46,
3444). The SPT survey covers an area of 2500 deg2, with 677 cluster
candidates above a signal-to-noise threshold of 4.5 (Ruel et al.,
2014, Cat. J/ApJ/792/45; Bleem et al., 2015, Cat. J/ApJS/216/27),
which represents a mass-limited sample (∼80 per cent complete at
M>5x1014M☉) to arbitrarily large distances. From this sample,
the 80 cluster candidates with the highest SZ-effect detection
significance have been observed with Chandra, through a Chandra X-ray
Visionary Project (PI: Benson) or other GO/GTO programmes (e.g. PI:
Mohr, Romer), resulting in ∼2000 counts per system. To this sample of
80 clusters, we added a number of other SPT systems which have
archival Chandra data (e.g. RDCS J0542-4100, PI: Ebeling; RXC
J0232.2-4420, PI: Boehringer). We did not include SPT-CL J0330-5228
(z=0.44), since the clusters A3125/A3128 (z=0.06) are in the
foreground, and SPT-CL J0037-5047 (z=1.026) because of insufficient
counts in the X-ray data.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 256 99 X-ray properties
table2.dat 134 99 Cluster and cRS properties
--------------------------------------------------------------------------------
See also:
J/ApJ/792/45 : SPT-SZ survey galaxy clusters optical spectroscopy (Ruel+ 2014)
J/ApJS/216/27 : Galaxy clusters discovered in the SPT-SZ survey (Bleem+, 2015)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 17 A17 --- Name Name
18 A1 --- n_Name [*] Note on Name (G1)
21- 25 I5 --- ObsID Chandra Obs. ID
26 A1 --- n_ObsID [,] indicates other ObsID at the en of the table
27- 31 F5.1 ks t Time on source after reprocessing the data
for ObsID
33- 34 I2 h RAh ? X-ray core right ascension (J2000)
36- 37 I2 min RAm ? X-ray core right ascension (J2000)
39- 44 F6.3 s RAs ? X-ray core right ascension (J2000)
45 A1 --- u_RAs [*] Uncertainty flag on RA
47 A1 --- DE- X-ray core declination sign (J2000)
48- 49 I2 deg DEd ? X-ray core declination (J2000)
51- 52 I2 arcmin DEm ? X-ray core declination (J2000)
54- 59 F6.3 arcsec DEs ? X-ray core declination (J2000)
60 A1 --- u_DEs [*] Uncertainty flag on DE
62- 67 F6.3 keV kT ? Central-bin temperature
(innermost region used for deprojection)
68 A1 --- --- [+]
69- 73 F5.2 keV E_kT ? Error on kT (upper value)
74 A1 --- --- [-]
75- 78 F4.2 keV e_kT ? Error on kT (lower value)
79 A1 --- n_kT [*] * for systems that are the ones with only
two bins for deprojection (see the text)
81- 86 F6.4 cm-3 ne ? Central-bin electron density
(innermost region used for deprojection)
87 A1 --- --- [+]
88- 93 F6.4 cm-3 E_ne ? Error on ne (upper value)
94 A1 --- --- [-]
95-100 F6.4 cm-3 e_ne ? Error on ne (lower value)
102-106 F5.1 kpc r ? Radius for the innermost region used for
spectral deprojection
108-112 F5.2 --- DkT ? Temperature drop (2)
113 A1 --- --- [+]
114-117 F4.2 --- E_DkT ? Error on DkT (upper value)
118 A1 --- --- [-]
119-123 F5.2 --- e_DkT ? Error on DkT (lower value)
125-132 F8.4 Gyr tcool ? Cooling time of the innermost region
133 A1 --- --- [+]
134-141 F8.4 Gyr E_tcool ? Error on tcool (upper value)
142 A1 --- --- [-]
143-150 F8.4 Gyr e_tcool ? Error on tcool (lower upper)
152-157 F6.3 Gyr tcool10 ? Cooling time at 10kpc derived using the
deprojected SB profiles (3)
158 A1 --- --- [+]
159-165 F7.4 Gyr E_tcool10 ? Error on tcool10 (upper value)
166 A1 --- --- [-]
167-173 F7.4 Gyr e_tcool10 ? Error on tcool10 (lower value)
175-179 F5.2 --- tc/ff ? Ratio of the cooling time to free-fall time
182-188 F7.3 --- etamin ? Thermal-stability parameter (4)
190-194 I5 --- ObsID2 ? Second Chandra Obs. ID
196-201 F6.3 ks t2 ? Time on source after reprocessing the data
for ObsID2
203-207 I5 --- ObsID3 ? Third Chandra Obs. ID
209-212 F4.1 ks t3 ? Time on source after reprocessing the data
for ObsID3
214-218 I5 --- ObsID4 ? Chandra Obs. ID No 4
220-223 F4.1 ks t4 ? Time on source after reprocessing the data
for ObsID4
225-229 I5 --- ObsID5 ? Chandra Obs. ID No 5
231-234 F4.1 ks t5 ? Time on source after reprocessing the data
for ObsID5
236-240 I5 --- ObsID6 ? Chandra Obs. ID No 6
242-245 F4.1 ks t6 ? Time on source after reprocessing the data
for ObsID6
247-251 I5 --- ObsID7 ? Chandra Obs. ID No 7
253-256 F4.1 ks t7 ? Time on source after reprocessing the data
for ObsID7
--------------------------------------------------------------------------------
Note (2): Temperature drop, calculated as the ratio between the highest and
the lowest temperatures of the profile when the profile is rising upward
smoothly. For the systems which do not have a statistically significant
temperature drop or their temperature profile is rising inwardly there is
no entry for the temperature drop.
Note (3): In some cases, the SB deprojection did not work well (due, e.g. to
the SB profile dropping or flattening towards the centre). In these cases,
there is no entry for the cooling time at 10kpc.
Note (4): from Voit et al. (2008ApJ...681L...5V 2008ApJ...681L...5V);
Inst.=min(kT/{LAMBDA}ne(nHr2). For some of the systems, the instability
profile is still rising, therefore there is no minimum (e.g. A399, A3158,
A754, and A2163). See the text for details.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- Sample Cooling flow (CF) or
non-cooling flow (NCF) sample
5- 21 A17 --- Name Name (G1)
22 A1 ---- n_Name [*] Note on Name (G1)
24- 29 F6.4 --- z Redshift
31 I1 --- r_z Reference for z (1)
33- 40 F8.2 10+35W LX(<rcool) ? X-ray luminosity inside the r<rcool
region (in 10+42erg/s unit)
41 A1 --- --- [+]
42- 47 F6.2 10+35W E_LX(<rcool) ? Error on LX(<rcool) (upper value)
48 A1 --- --- [-]
49- 54 F6.2 10+35W e_LX(<rcool) ? Error on LX(<rcool) (lower value)
56- 58 I3 kpc rcool ? Cooling radius
60- 64 F5.2 10+14Msun MSZ500 Mass within an overdensity 500 times the
critical density, M500, derived from
the SZ signal
66- 69 F4.2 10+14Msun e_MSZ500 rms uncertainty on MSZ500
71 I1 --- r_MSZ500 Reference for MSZ500 (1)
73- 77 I5 10+35W/s LX(<R500) ? X-ray luminosity inside the r<R500
region (in 10+42erg/s unit)
78 A1 --- --- [+]
79- 81 I3 10+35W/s E_LX(<R500) ? Error on LX(<R500) (upper value)
82 A1 --- --- [-]
83- 85 I3 10+35W/s e_LX(<R500) ? Error on LX(<R500) (lower value)
86 A1 --- u_LX(<R500) [?] Uncertainty flag on LX(<R500)
88- 95 F8.3 kpc R500 Radius at 500 times critical density
98 A1 --- l_L843MHz Limit flag on L843MHz
99-105 F7.4 Msun/yr L843MHz ? Rest-frame monochromatic radio
luminosity at 843MHz (2)
108-112 F5.3 Msun/yr e_L843MHz ? rms uncertainty on L843MHz
113 A1 --- n_L843MHz [*] Note on L843MHz (2)
115 A1 --- l_SFR Limit flag on SFR
116-121 F6.1 Msun/yr SFR ? Star formation rate from
McDonald et al. (2016ApJ...817...86M 2016ApJ...817...86M)
122 A1 --- --- [+]
123-127 F5.1 Msun/yr E_SFR ? Error on SFR (upper value)
128 A1 --- --- [-]
129-134 F6.2 Msun/yr e_SFR ? Error on SFR (lower value)
--------------------------------------------------------------------------------
Note (1): References as follows:
1 = Bleem et al. (2015ApJS..216...27B 2015ApJS..216...27B, Cat. J/ApJS/216/27)
2 = Hasselfield et al. (2013, J. Cosmol. Astropart. Phys., 7, 008)
3 = Hilton et al. (2013MNRAS.435.3469H 2013MNRAS.435.3469H)
4 = Marriage et al. (2011ApJ...737...61M 2011ApJ...737...61M)
5 = Reichardt et al. (2013ApJ...763..127R 2013ApJ...763..127R, Cat. J/ApJ/763/127)
6 = Ruel et al. (2014ApJ...792...45R 2014ApJ...792...45R, Cat. J/ApJ/792/45)
7 = Sifon et al. (2013ApJ...772...25S 2013ApJ...772...25S, Cat. J/ApJ/772/25)
Note (2): Rest-frame monochromatic radio luminosity at 843MHz using the flux
densities from SUMSS (Bock et al., 1999AJ....117.1578B 1999AJ....117.1578B),
except ACT-CL J0014-0056, ACT-CL J0022-0036, ACT-CL J0059-0049,
ACT-CL J0152-0100, ACT-CL J0206-0114, ACT-CL J2129-0005, ACT-CL J2154-0049,
and ACT-CL J2337-0016 where NVSS flux densities were used
(Condon et al., 1998AJ....115.1693C 1998AJ....115.1693C, Cat. VIII/65);
ACT-CL J0326-0043 where the FIRST flux density was used (Helfand et al.,
2015ApJ...801...26H 2015ApJ...801...26H, Cat. VIII/92); and for ACT-CL J0102-4915 and
ACT-CL J0152-0100 where the GMRT flux density at 610MHz from Lindner et al.
(2014ApJ...786...49L 2014ApJ...786...49L) and Kale et al. (2013A&A...557A..99K 2013A&A...557A..99K), respectively,
was used. The systems marked with asterisk are the ones for which we have GMRT
data at 325MHz (Intema et al., 2017A&A...598A..78I 2017A&A...598A..78I, Cat. J/A+A/598/78).
For SPT-CL J0106-5943, SPT-CL J2135-5726, and SPT-CL J2248-4431, we measured
the flux densities from SUMSS images (5.7±1.9mJy, 5.3±2.5mJy, and
15.4±4.9mJy, respectively). The numbers without errors are the upper limit
using the noise in the SUMSS or NVSS image: 6-10mJy/beam (depending on the
declination) for SUMSS (Mauch et al., 2003MNRAS.342.1117M 2003MNRAS.342.1117M, Cat. VIII/70) and
2.5mJy/beam for NVSS (Condon et al., 1998AJ....115.1693C 1998AJ....115.1693C, Cat. VIII/65).
--------------------------------------------------------------------------------
Global notes:
Note (G1): Other names as follows:
ACT-CL J0102-4915 = El Gordo
ACT-CL J0152-0100 = A267
SPT-CL J0232-4420 = RXCJ0232.2-4420
ACT-CL J0245-5302 = AS0295
ACT-CL J0326-0043 = MACS J0326-0043
SPT-CL J0542-4100 = RDCS J0542-4100
SPT-CL J2011-5725 = RXCJ2011.3-5725
ACT-CL J2129-0005 = RXJ2129.6+0005
SPT-CL J2248-4431 = AS1063
SPT-CL J2325-4111 = ACOS1121
ACT-CL J2337-0016 = A2631
SPT-CL J2344-4242 = Phoenix cluster
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 22-May-2020