J/MNRAS/479/3563    Rate of SNe Ia in galaxy clusters         (Friedmann+, 2018)

The rate of Type-Ia supernovae in galaxy clusters and the delay-time distribution out to redshift 1.75. Friedmann M., Maoz D. <Mon. Not. R. Astron. Soc., 479, 3563-3581 (2018)> =2018MNRAS.479.3563F 2018MNRAS.479.3563F (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Clusters, galaxy ; Redshifts ; Photometry, HST Keywords: surveys - supernovae: general - galaxies: clusters Abstract: The observed delay-time distribution (DTD) of Type-Ia supernovae (SNe Ia) is a valuable probe of SN Ia progenitors and physics, and of the role of SNe Ia in cosmic metal enrichment. The SN Ia rate in galaxy clusters as a function of cluster redshift is an almost-direct measure of the DTD, but current estimates have been limited out to a mean redshift =1.1, corresponding to time delays, after cluster star formation, of ≥3.2Gyr. We analyze data from a Hubble Space Telescope monitoring project of 12 galaxy clusters at z=1.13-1.75, where we discover 29 SNe, and present their multiband light curves. Based on the SN photometry and the apparent host galaxies, we assess cluster membership and SN type, finding 11cases that are likely SNe Ia in cluster galaxies and 4 more cases, which are possible but not certain cluster SNe Ia. We conduct simulations to estimate the SN detection efficiency, the experiment's completeness, and the photometric errors, and perform photometry of the cluster galaxies to derive the cluster stellar masses. With this input, we obtain a mean =1.35 cluster rest-frame SN Ia rate per unit formed stellar mass of RIa,m*=2.6+3.2-1.5x10-13yr-1M-1. Separating the cluster sample into high-z and low-z bins, the rates are 2.2+2.6-1.3x10-13yr-1M-1 at =1.25, and 3.5+6.6-2.8x10-13yr-1M-1 at =1.58. Combining our results with previous cluster SN Ia rates, we fit the DTD, now down to delays of 1.5Gyr, with a power-law dependence, tα, with α=-1.30+0.23-0.16. We confirm previous indications for a SN Ia production efficiency that is several times higher in galaxy clusters than in the field, perhaps caused by a peculiar stellar initial mass function in clusters, or by a higher incidence of binaries that will evolve into SNe Ia. Description: Our analysis is based on archival data from a multi-epoch HST imaging program of a sample of 12 massive galaxy clusters at redshifts between 1.13 and 1.75 (HST Programs GO-13677 and GO-14327, PI: S. Perlmutter, Observing Cycles 22 and 23). We have identified 29 transients that we consider likely to be real SN detections, which we list in Table 2. All photometric measurements for our detected transients are given in Table 3. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 126 29 Supernova candidates table3.dat 57 225 Full photometry table for all SNe candidates -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Cluster Cluster Name 12- 14 A3 --- --- A1 15- 18 F4.2 --- z Redshift 19 A1 --- --- A2 21- 27 A7 --- SNID Supernova Name (1) 29- 30 I2 h RAh Right Ascension (J2000) 32- 33 I2 min RAm Right Ascension (J2000) 35- 38 F4.1 s RAs Right Ascension (J2000) 40 A1 --- DE- Declination sign (J2000) 41- 42 I2 deg DEd Declination (J2000) 44- 45 I2 arcmin DEm Declination (J2000) 47- 50 F4.1 arcsec DEs Declination (J2000) 52- 54 F3.1 arcsec Sep ?=- Angular separation between the SN and its host galaxy (if an obvious host exists) 56- 58 I3 kpc Dist Projected distance between the SN and approximate center of cluster 60 A1 --- Cl.Ia? Decision on whether transient is a SN Ia at the cluster redshift (2) 62- 65 F4.1 --- x1 ? SALT2 light-curve width 67- 69 F3.1 --- e_x1 ? SALT2 light-curve width error (lower value) 71- 73 F3.1 --- E_x1 ? SALT2 light-curve width error (upper value) 75- 79 F5.2 --- c ? SALT2 c parameter 81- 84 F4.2 --- E_c ? SALT2 c parameter error (upper value) 86- 89 F4.2 --- e_c ? SALT2 c parameter error (lower value) 91- 96 F6.2 mag MB ? Absolute magnitude at maximum light in the rest-frame B obtained through a SN Ia luminosity-width-colour relation 98-101 F4.2 mag E_MB ? Magnitude error (upper value) 103-106 F4.2 mag e_MB ? Magnitude error (lower value) 108-111 I4 d t0 ? SALT2 Observer-frame time corresponding to the source's phase=0. 113-114 I2 d E_t0 ? t0 error (upper value) 116-117 I2 d e_t0 ? t0 error (lower value) 119-123 F5.2 --- Chi2 ? Chi-squared of best cluster SN Ia model fit 125-126 I2 --- dof ? Degree of freedom of best cluster SN Ia model fit -------------------------------------------------------------------------------- Note (1): SN FMNN identified as [FM2018] SN FMNN. Note (2): Flag as follows: + = yes - = no ? = possible -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Cluster Cluster Name 12- 18 A7 --- SNID Supernova Name 20- 27 F8.3 d JD Julian Date (JD-2450000) 36- 40 A5 --- Band Observed Band 44- 48 F5.3 10-21W/m2 Flux Flux 53- 57 F5.3 10-21W/m2 e_Flux Flux Error -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Ana Fiallos [CDS] 02-May-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line