J/MNRAS/479/3563 Rate of SNe Ia in galaxy clusters (Friedmann+, 2018)
The rate of Type-Ia supernovae in galaxy clusters and the delay-time
distribution out to redshift 1.75.
Friedmann M., Maoz D.
<Mon. Not. R. Astron. Soc., 479, 3563-3581 (2018)>
=2018MNRAS.479.3563F 2018MNRAS.479.3563F (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Clusters, galaxy ; Redshifts ; Photometry, HST
Keywords: surveys - supernovae: general - galaxies: clusters
Abstract:
The observed delay-time distribution (DTD) of Type-Ia supernovae (SNe
Ia) is a valuable probe of SN Ia progenitors and physics, and of the
role of SNe Ia in cosmic metal enrichment. The SN Ia rate in galaxy
clusters as a function of cluster redshift is an almost-direct measure
of the DTD, but current estimates have been limited out to a mean
redshift =1.1, corresponding to time delays, after cluster star
formation, of ≥3.2Gyr. We analyze data from a Hubble Space Telescope
monitoring project of 12 galaxy clusters at z=1.13-1.75, where we
discover 29 SNe, and present their multiband light curves. Based on
the SN photometry and the apparent host galaxies, we assess cluster
membership and SN type, finding 11cases that are likely SNe Ia in
cluster galaxies and 4 more cases, which are possible but not certain
cluster SNe Ia. We conduct simulations to estimate the SN detection
efficiency, the experiment's completeness, and the photometric errors,
and perform photometry of the cluster galaxies to derive the cluster
stellar masses. With this input, we obtain a mean =1.35 cluster
rest-frame SN Ia rate per unit formed stellar mass of
RIa,m*=2.6+3.2-1.5x10-13yr-1M☉-1. Separating the
cluster sample into high-z and low-z bins, the rates are
2.2+2.6-1.3x10-13yr-1M☉-1 at =1.25, and
3.5+6.6-2.8x10-13yr-1M☉-1 at =1.58. Combining our
results with previous cluster SN Ia rates, we fit the DTD, now down
to delays of 1.5Gyr, with a power-law dependence, tα, with
α=-1.30+0.23-0.16. We confirm previous indications for a SN
Ia production efficiency that is several times higher in galaxy
clusters than in the field, perhaps caused by a peculiar stellar
initial mass function in clusters, or by a higher incidence of
binaries that will evolve into SNe Ia.
Description:
Our analysis is based on archival data from a multi-epoch HST imaging
program of a sample of 12 massive galaxy clusters at redshifts between
1.13 and 1.75 (HST Programs GO-13677 and GO-14327, PI: S. Perlmutter,
Observing Cycles 22 and 23).
We have identified 29 transients that we consider likely to be real SN
detections, which we list in Table 2.
All photometric measurements for our detected transients are given in
Table 3.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 126 29 Supernova candidates
table3.dat 57 225 Full photometry table for all SNe candidates
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Cluster Cluster Name
12- 14 A3 --- --- A1
15- 18 F4.2 --- z Redshift
19 A1 --- --- A2
21- 27 A7 --- SNID Supernova Name (1)
29- 30 I2 h RAh Right Ascension (J2000)
32- 33 I2 min RAm Right Ascension (J2000)
35- 38 F4.1 s RAs Right Ascension (J2000)
40 A1 --- DE- Declination sign (J2000)
41- 42 I2 deg DEd Declination (J2000)
44- 45 I2 arcmin DEm Declination (J2000)
47- 50 F4.1 arcsec DEs Declination (J2000)
52- 54 F3.1 arcsec Sep ?=- Angular separation between the SN and its
host galaxy (if an obvious host exists)
56- 58 I3 kpc Dist Projected distance between the SN and
approximate center of cluster
60 A1 --- Cl.Ia? Decision on whether transient is a SN Ia at
the cluster redshift (2)
62- 65 F4.1 --- x1 ? SALT2 light-curve width
67- 69 F3.1 --- e_x1 ? SALT2 light-curve width error (lower value)
71- 73 F3.1 --- E_x1 ? SALT2 light-curve width error (upper value)
75- 79 F5.2 --- c ? SALT2 c parameter
81- 84 F4.2 --- E_c ? SALT2 c parameter error (upper value)
86- 89 F4.2 --- e_c ? SALT2 c parameter error (lower value)
91- 96 F6.2 mag MB ? Absolute magnitude at maximum light in the
rest-frame B obtained through a SN Ia
luminosity-width-colour relation
98-101 F4.2 mag E_MB ? Magnitude error (upper value)
103-106 F4.2 mag e_MB ? Magnitude error (lower value)
108-111 I4 d t0 ? SALT2 Observer-frame time corresponding to
the source's phase=0.
113-114 I2 d E_t0 ? t0 error (upper value)
116-117 I2 d e_t0 ? t0 error (lower value)
119-123 F5.2 --- Chi2 ? Chi-squared of best cluster SN Ia model fit
125-126 I2 --- dof ? Degree of freedom of best cluster SN Ia
model fit
--------------------------------------------------------------------------------
Note (1): SN FMNN identified as [FM2018] SN FMNN.
Note (2): Flag as follows:
+ = yes
- = no
? = possible
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Cluster Cluster Name
12- 18 A7 --- SNID Supernova Name
20- 27 F8.3 d JD Julian Date (JD-2450000)
36- 40 A5 --- Band Observed Band
44- 48 F5.3 10-21W/m2 Flux Flux
53- 57 F5.3 10-21W/m2 e_Flux Flux Error
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Ana Fiallos [CDS] 02-May-2022