J/MNRAS/485/L68    The evolution of stellar rotation   (Lorenzo-Oliveira+, 2019)

Constraining the evolution of stellar rotation using solar twins. Lorenzo-Oliveira D., Melendez J., Yana Galarza J., Ponte G., dos Santos L.A., Spina L., Bedell M., Ramirez I., Bean J.L., Asplund M. <Mon. Not. R. Astron. Soc., 485, L68-72 (2019)> =2019MNRAS.485L..68L 2019MNRAS.485L..68L (SIMBAD/NED BibCode)
ADC_Keywords: Stars, fundamental ; Stars, masses ; Stars, G-type ; Optical Keywords: Sun: rotation - stars: fundamental parameters - stars: rotation - stars: solar-type Abstract: The stellar rotation versus age relation is commonly considered a useful tool to derive reliable ages for Sun-like stars. However, in the light of Kepler data, the presence of apparently old and fast rotators that do not obey the usual gyrochronology relations led to the hypothesis of weakened magnetic breaking in some stars. In this letter, we constrain the solar rotation evolutionary track using solar twins. Predicted rotational periods as a function of mass, age, [Fe/H], and given critical Rossby number (Rocrit) were estimated for the entire rotational sample. Our analysis favours the smooth rotational evolution scenario and suggests that if the magnetic weakened breaking scenario takes place at all, it should arise after Rocrit≳2.29 or ages ≳5.3Gyr (at 95 per cent confidence level). Description: We compiled 79 solar twins (plus the Sun) presented in Spina et al. (2018MNRAS.474.2580S 2018MNRAS.474.2580S, Cat. J/MNRAS/474/2580). Our sample was extensively observed over the years (2011-2016) with HARPS spectrograph (Mayor et al. 2003Msngr.114...20M 2003Msngr.114...20M) fed by the 3.6m telescope at La Silla Observatory, to search for planets around solar twins (program 188.C-0265, Melendez et al. 2017A&A...597A..34M 2017A&A...597A..34M). To prevent the inclusion of anomalously fast rotators due to binarity effects, 17 spectroscopic binary (SB) stars and other solar twins with a close companion within 4in. were discarded from the analysis (dos Santos et al. 2017MNRAS.472.3425D 2017MNRAS.472.3425D). Other interesting solar twins spectroscopically analysed in the past by our group were added to our sample (HIP30503 and HIP78399 in Galarza, Melendez & Cohen 2016A&A...589A..65G 2016A&A...589A..65G). The resulting HARPS sample of this work is composed of 65 stars. In order to estimate rotational velocities and other stellar parameters of interest, we used the updated atmospheric parameters (Teff, logg, [Fe/H], and [α/Fe]) provided by Spina et al. (2018MNRAS.474.2580S 2018MNRAS.474.2580S, Cat. J/MNRAS/474/2580). Gaia DR2 G band photometry and parallaxes (Gaia Collaboration 2018A&A...616A...1G 2018A&A...616A...1G, Cat. I/345) were combined to the spectroscopic data to obtain stellar ages, masses, logg, and other evolutionary parameters following the procedures described in Grieves et al. (2018MNRAS.481.3244G 2018MNRAS.481.3244G, Cat. J/MNRAS/481/3244). Stellar atmospheric and evolutionary parameters, projected Prot, and other relevant information of the entire sample is shown in tables 1a, 1b and 1c. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1a.dat 103 15 Relevant parameters of solar twins stars table1b.dat 83 40 Relevant parameters for our rotation sample of solar twins stars analysed in this paper (selected sample) table1c.dat 62 5 Averaged parameters for our rotation sample of solar twins stars -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1a.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Star name 13- 15 F3.1 Gyr Age Star age 17- 19 F3.1 Gyr e_Age Lower error on Age 21- 23 F3.1 Gyr E_Age Upper error on Age 25- 28 F4.2 Msun Mstar Star mass 30- 33 F4.2 Msun e_Mstar Error on Mstar 35- 40 F6.3 [-] [Fe/H] Iron to hydrogen abundance ratio 42- 46 F5.3 [-] e_[Fe/H] Error on [Fe/H] 48- 51 F4.1 d Psini ? Rotational period divided by the projection factor sini 53- 55 F3.1 d e_Psini ? Error on Psini 57- 60 F4.1 d Prot Rotational period 62- 64 F3.1 d e_Prot Error on Prot 66- 69 F4.1 d ProtP Median rotational period 71- 74 F4.1 d e_ProtP Error on ProtP 76- 79 F4.1 d ProtPRo2 Median rotational period for Rocrit=2.0 (G1) 81- 83 F3.1 d e_ProtPRo2 Error on ProtPRo2 85-103 A19 --- Remarks References and remarks (1) -------------------------------------------------------------------------------- Note (1): References as follows: see17 = See et al. 2017MNRAS.466.1542S 2017MNRAS.466.1542S suarez17 = Suarez Mascareno et al. 2017MNRAS.468.4772S 2017MNRAS.468.4772S petit08 = Petit et al. 2008MNRAS.388...80P 2008MNRAS.388...80P wright11 = Wright et al. 2011ApJ...743...48W 2011ApJ...743...48W, Cat. J/ApJ/743/48 mcquillan13 = McQuillan et al. 2013ApJ...775L..11M 2013ApJ...775L..11M, Cat. J/ApJ/775/L11 mazeh15 = Mazeh et al. 2015ApJ...801....3M 2015ApJ...801....3M, Cat. J/ApJ/801/3 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1b.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Star name 12- 14 F3.1 Gyr Age Star age 16- 18 F3.1 Gyr e_Age Lower error on Age 20- 22 F3.1 Gyr E_Age Upper error on Age 24- 27 F4.2 Msun Mstar Star mass 29- 32 F4.2 Msun e_Mstar Error on Mstar 34- 39 F6.3 [-] [Fe/H] Iron to hydrogen abundance ratio 41- 45 F5.3 [-] e_[Fe/H] Error on [Fe/H] 47- 50 F4.1 d Psini Rotational period divided by the projection factor sini 52- 54 F3.1 d e_Psini Error on Psini 56- 59 F4.1 d Prot ? Rotational period 61- 63 F3.1 d e_Prot ? Error on Prot 65- 68 F4.1 d ProtP Median rotational period 70- 73 F4.1 d e_ProtP Error on ProtP 75- 78 F4.1 d ProtPRo2 Median rotational period for Rocrit=2.0 (G1) 80- 83 F4.1 d e_ProtPRo2 Error on ProtPRo2 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1c.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 Gyr BinAge Age bin on which the means where computed 6- 8 F3.1 Gyr Agemean Average of the star ages for each age bin 10- 12 F3.1 Gyr e_Agemean Error on Agemean 14- 17 F4.2 Msun Mstarmean Average of the star masses for each age bin 19- 22 F4.2 Msun e_Mstarmean Error on Mstarmean 24- 29 F6.3 [-] [Fe/H] Average iron to hydrogen abundance ratio 31- 35 F5.3 [-] e_[Fe/H] Error on [Fe/H] 37- 40 F4.1 d Psinimean Average rotational period divided by the projection factor sini for each age bin 42- 44 F3.1 d e_Psinimean Error on Psini 46- 49 F4.1 d ProtPmean Average median rotational period for each age bin 51- 53 F3.1 d e_ProtPmean Error on ProtPmean 55- 58 F4.1 d ProtPRo2mean Average median rotational period for Rocrit=2.0 for each age bin (G1) 60- 62 F3.1 d e_ProtPRo2mean Error on ProtPRo2mean -------------------------------------------------------------------------------- Global Notes: Note (G1): Median rotational period obtained for a critical Rossby number Ro=2, where Ro=Prot/τCZ with τCZ the convective turnover time (Noyes et al. 1984ApJ...279..763N 1984ApJ...279..763N) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Ana Fiallos [CDS] 07-Sep-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line