J/MNRAS/489/1753 Masses and radii of Kepler and CoRoT targets (Yildiz+, 2019)
Fundamental properties of Kepler and CoRoT targets - IV.
Masses and radii from frequencies of minimum Δν and their implications.
Yildiz M., Celik Orhan Z., Kayhan C.
<Mon. Not. R. Astron. Soc., 489, 1753-1769 (2019)>
=2019MNRAS.489.1753Y 2019MNRAS.489.1753Y (SIMBAD/NED BibCode)
ADC_Keywords: Stars, late-type ; Asteroseismology ; Effective temperatures ;
Stars, masses ; Stars, diameters ; Stars, distances ; Optical
Keywords: stars: evolution - stars: fundamental parameters - stars: interiors -
stars: late-type - stars: oscillations
Abstract:
Recently, by analysing the oscillation frequencies of 90 stars,
Yildiz, Celik Orhan & Kayhan have shown that the reference frequencies
(νmin0, νmin1, and νmin2) derived from glitches due to
He II ionization zone have very strong diagnostic potential for the
determination of their effective temperatures. In this study, we
continue to analyse the same stars and compute their mass, radius, and
age from different scaling relations including relations based on
νmin0, νmin1, and νmin2. For most of the stars, the
masses computed using νmin0 and νmin1 are very close to each
other. For 38 stars, the difference between these masses is less than
0.024 M☉. The radii of these stars from νmin0 and
νmin1 are even closer, with differences of less than
0.007R☉. These stars may be the most well known solar-like
oscillating stars and deserve to be studied in detail. The
asteroseismic expressions we derive for mass and radius show slight
dependence on metallicity. We therefore develop a new method for
computing initial metallicity from this surface metallicity by taking
into account the effect of microscopic diffusion. The time dependence
of initial metallicity shows some very interesting features that may
be important for our understanding of chemical enrichment of Galactic
Disc. According to our findings, every epoch of the disc has its own
lowest and highest values for metallicity. It seems that rotational
velocity is inversely proportional to 1/2 power of age as given by the
Skumanich relation.
Description:
In this study, we analyse observed oscillation frequencies, check the
relations between the reference frequencies, and apply the new methods
to the Kepler and CoRoT target stars (79 Kepler stars, 10 other stars
and the Sun). We find their M, Teff, R, luminosity (L), age
(tsis), and distance (dsis) using asteroseismic parameters. The
role of the small separation between oscillation frequencies
(δν02) is crucial in the computation of tsis for MS stars.
Its mean value (<δν02>) is about 15µHz for zero-age MS
(ZAMS) stars and 5µHz for terminal-age MS (TAMS) stars. The
distance (dobs) is also computed from very precise Gaia DR2 parallax
(Gaia Collaboration 2018A&A...616A...1G 2018A&A...616A...1G, Cat. I/345).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableb1.dat 335 90 Basic properties of Kepler and CoRoT targets
refs.dat 68 55 References
--------------------------------------------------------------------------------
See also:
B/corot : CoRoT observation log (N2-4.4) (CoRoT 2016)
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009)
I/345 : Gaia DR2 (Gaia Collaboration 2018)
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Name Star name (1)
11- 16 F6.1 uHz numax Frequency of maximum amplitude
18- 23 F6.1 uHz numin0 ? Reference frequency for min0
25- 30 F6.1 uHz numin1 ? Reference frequency for min1
32- 37 F6.1 uHz numin2 ? Reference frequency for min2
39- 43 F5.1 uHz Dnu Mean large separation between oscillation
frequencies
45- 48 F4.1 uHz dnu ? Mean small separation between oscillation
frequencies
50- 53 I4 K TeS Effective temperature from spectra (see
Section 2 in Paper III) (2)
55- 58 I4 K TeVK ? Effective temperature from V-K colour (see
Section 2 in Paper III) (2)
60- 63 I4 K TeBV ? Effective temperature from B-V colour (see
Section 2 in Paper III) (2)
65- 68 I4 K Tsis0 ? Effective temperature from min0 (see
Section 2 in Paper III) (2)
70- 73 I4 K Tsis1 ? Effective temperature from min1 (see
Section 3 in Paper III) (2)
75- 78 I4 K Tsis2 ? Effective temperature from min2 (see
Section 3 in Paper III) (2)
80- 83 F4.2 Msun Msca Star mass from new scaling relation (see
Section 3 in Paper III) (2)
85- 88 F4.2 Msun Msis0 ? Star mass from min0 (see Section 3 in
Paper III) (2)
90- 93 F4.2 Msun Msis1 ? Star mass from min1 (see Section 3 in
Paper III) (2)
95- 98 F4.2 Msun Mlit ? Star mass from litterature
100-104 F5.2 Rsun Rsca Star radius from new scaling relation (see
Section 3 in Paper III) (2)
106-110 F5.2 Rsun Rsis0 ? Star radius from min0 (see Section 3 in
Paper III) (2)
112-115 F4.2 Rsun Rsis1 ? Star radius from min1 (see Section 3 in
Paper III) (2)
117-121 F5.2 Rsun Rlit ? Star radius from litterature
123-129 F7.2 pc dobs ? Distance from litterature
131-137 F7.2 pc dsis ? Distance from seismic
139-142 F4.2 [cm/s2] loggsca Surface gravity from new scaling relation
(see Section 3 in Paper III) (2)
144-147 F4.2 [cm/s2] loggsis ? Surface gravity from seismic (see Section 2)
149-152 F4.2 [cm/s2] loggspc ? Surface gravity from spectra
154-158 F5.2 Gyr tsis ? Age from seismic (see Section 2)
160-163 F4.2 Gyr tyil ? Age from method that based on mass, radius
and metallicity
(Yildiz et al. 2014MNRAS.445.4395Y 2014MNRAS.445.4395Y)
165-170 F6.4 --- Zs Metallicity in the photosphere of the star
(see Section 3)
172-177 F6.4 --- Zo Initial metallicity (see Section 3)
179-183 F5.1 uHz e_numax Error on numax
185-188 F4.1 uHz e_numin0 ? Error on numin0
190-193 F4.1 uHz e_numin1 ? Error on numin1
195-198 F4.1 uHz e_numin2 ? Error on numin2
200-202 F3.1 uHz e_Dnu Error on Dnu
204-206 I3 K e_TeS Error on TeS
208-210 I3 K e_TeVK ? Error on TeVK
212-214 I3 K e_TeBV ? Error on TeBV
216-218 I3 K e_Tsis0 ? Error on Tsis0
220-222 I3 K e_Tsis1 ? Error on Tsis1
224-226 I3 K e_Tsis2 ? Error on Tsis2
228-231 F4.2 Msun e_Msca Error on Msca
233-236 F4.2 Msun e_Msis0 ? Error on Msis0
238-241 F4.2 Msun e_Msis1 ? Error on Msis1
243-246 F4.2 Msun e_Mlit ? Error on Mlit
248-251 F4.2 Rsun e_Rsca Error on Rsca
253-256 F4.2 Rsun e_Rsis0 ? Error on Rsis0
258-261 F4.2 Rsun e_Rsis1 ? Error on Rsis1
263-266 F4.2 Rsun e_Rlit ? Error on Rlit
268-272 F5.2 pc e_dobs ? Error on dobs
274-278 F5.2 pc e_dsis ? Error on dsis
280-283 F4.2 [cm/s2] e_loggsca Error on gsca
285-288 F4.2 [cm/s2] e_loggsis ? Error on gsis
290-293 F4.2 [cm/s2] e_loggspc ? Error on gspc
295-298 F4.2 Gyr e_tsis ? Error on tsis
300-303 F4.2 Gyr e_tyil ? Error on tyil
305-310 F6.4 --- e_Zs ? Error on Zs
312-317 F6.4 --- e_Zo ? Error on Zo
319-335 A17 --- Ref References in refs.dat
--------------------------------------------------------------------------------
Note (1): Unlike others, for Procyon A, mass and radius are the observed
values, not the model values in the literature
Note (2): Paper III, Yildiz et al. 2016MNRAS.462.1577Y 2016MNRAS.462.1577Y, Cat. J/MNRAS/462/1577
--------------------------------------------------------------------------------
Byte-by-byte Description of file: refs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Ref Reference number
4- 22 A19 --- BibCode BibCode
24- 47 A24 --- Aut Author's name
48- 68 A21 --- Com Comments
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Yildiz et al., Paper I 2014MNRAS.441.2148Y 2014MNRAS.441.2148Y
Yildiz et al., Paper II 2015MNRAS.448.3689Y 2015MNRAS.448.3689Y
Yildiz et al., Paper III 2016MNRAS.462.1577Y 2016MNRAS.462.1577Y, Cat. J/MNRAS/462/1577
(End) Ana Fiallos [CDS] 06-Jan-2023