J/MNRAS/489/1753   Masses and radii of Kepler and CoRoT targets  (Yildiz+, 2019)

Fundamental properties of Kepler and CoRoT targets - IV. Masses and radii from frequencies of minimum Δν and their implications. Yildiz M., Celik Orhan Z., Kayhan C. <Mon. Not. R. Astron. Soc., 489, 1753-1769 (2019)> =2019MNRAS.489.1753Y 2019MNRAS.489.1753Y (SIMBAD/NED BibCode)
ADC_Keywords: Stars, late-type ; Asteroseismology ; Effective temperatures ; Stars, masses ; Stars, diameters ; Stars, distances ; Optical Keywords: stars: evolution - stars: fundamental parameters - stars: interiors - stars: late-type - stars: oscillations Abstract: Recently, by analysing the oscillation frequencies of 90 stars, Yildiz, Celik Orhan & Kayhan have shown that the reference frequencies (νmin0, νmin1, and νmin2) derived from glitches due to He II ionization zone have very strong diagnostic potential for the determination of their effective temperatures. In this study, we continue to analyse the same stars and compute their mass, radius, and age from different scaling relations including relations based on νmin0, νmin1, and νmin2. For most of the stars, the masses computed using νmin0 and νmin1 are very close to each other. For 38 stars, the difference between these masses is less than 0.024 M. The radii of these stars from νmin0 and νmin1 are even closer, with differences of less than 0.007R. These stars may be the most well known solar-like oscillating stars and deserve to be studied in detail. The asteroseismic expressions we derive for mass and radius show slight dependence on metallicity. We therefore develop a new method for computing initial metallicity from this surface metallicity by taking into account the effect of microscopic diffusion. The time dependence of initial metallicity shows some very interesting features that may be important for our understanding of chemical enrichment of Galactic Disc. According to our findings, every epoch of the disc has its own lowest and highest values for metallicity. It seems that rotational velocity is inversely proportional to 1/2 power of age as given by the Skumanich relation. Description: In this study, we analyse observed oscillation frequencies, check the relations between the reference frequencies, and apply the new methods to the Kepler and CoRoT target stars (79 Kepler stars, 10 other stars and the Sun). We find their M, Teff, R, luminosity (L), age (tsis), and distance (dsis) using asteroseismic parameters. The role of the small separation between oscillation frequencies (δν02) is crucial in the computation of tsis for MS stars. Its mean value (<δν02>) is about 15µHz for zero-age MS (ZAMS) stars and 5µHz for terminal-age MS (TAMS) stars. The distance (dobs) is also computed from very precise Gaia DR2 parallax (Gaia Collaboration 2018A&A...616A...1G 2018A&A...616A...1G, Cat. I/345). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 335 90 Basic properties of Kepler and CoRoT targets refs.dat 68 55 References -------------------------------------------------------------------------------- See also: B/corot : CoRoT observation log (N2-4.4) (CoRoT 2016) V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) I/345 : Gaia DR2 (Gaia Collaboration 2018) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Star name (1) 11- 16 F6.1 uHz numax Frequency of maximum amplitude 18- 23 F6.1 uHz numin0 ? Reference frequency for min0 25- 30 F6.1 uHz numin1 ? Reference frequency for min1 32- 37 F6.1 uHz numin2 ? Reference frequency for min2 39- 43 F5.1 uHz Dnu Mean large separation between oscillation frequencies 45- 48 F4.1 uHz dnu ? Mean small separation between oscillation frequencies 50- 53 I4 K TeS Effective temperature from spectra (see Section 2 in Paper III) (2) 55- 58 I4 K TeVK ? Effective temperature from V-K colour (see Section 2 in Paper III) (2) 60- 63 I4 K TeBV ? Effective temperature from B-V colour (see Section 2 in Paper III) (2) 65- 68 I4 K Tsis0 ? Effective temperature from min0 (see Section 2 in Paper III) (2) 70- 73 I4 K Tsis1 ? Effective temperature from min1 (see Section 3 in Paper III) (2) 75- 78 I4 K Tsis2 ? Effective temperature from min2 (see Section 3 in Paper III) (2) 80- 83 F4.2 Msun Msca Star mass from new scaling relation (see Section 3 in Paper III) (2) 85- 88 F4.2 Msun Msis0 ? Star mass from min0 (see Section 3 in Paper III) (2) 90- 93 F4.2 Msun Msis1 ? Star mass from min1 (see Section 3 in Paper III) (2) 95- 98 F4.2 Msun Mlit ? Star mass from litterature 100-104 F5.2 Rsun Rsca Star radius from new scaling relation (see Section 3 in Paper III) (2) 106-110 F5.2 Rsun Rsis0 ? Star radius from min0 (see Section 3 in Paper III) (2) 112-115 F4.2 Rsun Rsis1 ? Star radius from min1 (see Section 3 in Paper III) (2) 117-121 F5.2 Rsun Rlit ? Star radius from litterature 123-129 F7.2 pc dobs ? Distance from litterature 131-137 F7.2 pc dsis ? Distance from seismic 139-142 F4.2 [cm/s2] loggsca Surface gravity from new scaling relation (see Section 3 in Paper III) (2) 144-147 F4.2 [cm/s2] loggsis ? Surface gravity from seismic (see Section 2) 149-152 F4.2 [cm/s2] loggspc ? Surface gravity from spectra 154-158 F5.2 Gyr tsis ? Age from seismic (see Section 2) 160-163 F4.2 Gyr tyil ? Age from method that based on mass, radius and metallicity (Yildiz et al. 2014MNRAS.445.4395Y 2014MNRAS.445.4395Y) 165-170 F6.4 --- Zs Metallicity in the photosphere of the star (see Section 3) 172-177 F6.4 --- Zo Initial metallicity (see Section 3) 179-183 F5.1 uHz e_numax Error on numax 185-188 F4.1 uHz e_numin0 ? Error on numin0 190-193 F4.1 uHz e_numin1 ? Error on numin1 195-198 F4.1 uHz e_numin2 ? Error on numin2 200-202 F3.1 uHz e_Dnu Error on Dnu 204-206 I3 K e_TeS Error on TeS 208-210 I3 K e_TeVK ? Error on TeVK 212-214 I3 K e_TeBV ? Error on TeBV 216-218 I3 K e_Tsis0 ? Error on Tsis0 220-222 I3 K e_Tsis1 ? Error on Tsis1 224-226 I3 K e_Tsis2 ? Error on Tsis2 228-231 F4.2 Msun e_Msca Error on Msca 233-236 F4.2 Msun e_Msis0 ? Error on Msis0 238-241 F4.2 Msun e_Msis1 ? Error on Msis1 243-246 F4.2 Msun e_Mlit ? Error on Mlit 248-251 F4.2 Rsun e_Rsca Error on Rsca 253-256 F4.2 Rsun e_Rsis0 ? Error on Rsis0 258-261 F4.2 Rsun e_Rsis1 ? Error on Rsis1 263-266 F4.2 Rsun e_Rlit ? Error on Rlit 268-272 F5.2 pc e_dobs ? Error on dobs 274-278 F5.2 pc e_dsis ? Error on dsis 280-283 F4.2 [cm/s2] e_loggsca Error on gsca 285-288 F4.2 [cm/s2] e_loggsis ? Error on gsis 290-293 F4.2 [cm/s2] e_loggspc ? Error on gspc 295-298 F4.2 Gyr e_tsis ? Error on tsis 300-303 F4.2 Gyr e_tyil ? Error on tyil 305-310 F6.4 --- e_Zs ? Error on Zs 312-317 F6.4 --- e_Zo ? Error on Zo 319-335 A17 --- Ref References in refs.dat -------------------------------------------------------------------------------- Note (1): Unlike others, for Procyon A, mass and radius are the observed values, not the model values in the literature Note (2): Paper III, Yildiz et al. 2016MNRAS.462.1577Y 2016MNRAS.462.1577Y, Cat. J/MNRAS/462/1577 -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Ref Reference number 4- 22 A19 --- BibCode BibCode 24- 47 A24 --- Aut Author's name 48- 68 A21 --- Com Comments -------------------------------------------------------------------------------- History: From electronic version of the journal References: Yildiz et al., Paper I 2014MNRAS.441.2148Y 2014MNRAS.441.2148Y Yildiz et al., Paper II 2015MNRAS.448.3689Y 2015MNRAS.448.3689Y Yildiz et al., Paper III 2016MNRAS.462.1577Y 2016MNRAS.462.1577Y, Cat. J/MNRAS/462/1577
(End) Ana Fiallos [CDS] 06-Jan-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line