J/MNRAS/489/4389  JINGLE V Dust properties of nearby galaxies  (Lamperti+, 2019)

JINGLE - V. Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting. Lamperti I., Saintonge A., De Looze I., Accurso G., Clark C.J.R., Smith M.W.L., Wilson C.D., Brinks E., Brown T., Bureau M., Clements D.L., Eales S., Glass D.H.W., Hwang H.S., Lee J.C., Lin L., Michalowski M.J., Sargent M., Williams T.G., Xiao T., Yang C. <Mon. Not. R. Astron. Soc., 489, 4389-4417 (2019)> =2019MNRAS.489.4389L 2019MNRAS.489.4389L (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; Interstellar medium ; Models Keywords: dust, extinction - galaxies: evolution - galaxies: ISM - submillimetre: ISM Abstract: We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850µm range. We derive the total dust mass, temperature T, and emissivity index β of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified blackbody model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and β. Applying the hierarchical approach, the strength of the T-β anticorrelation is reduced from a Pearson correlation coefficient R=-0.79 to R=-0.52. For the JINGLE galaxies we measure dust temperatures in the range 17-30K and dust emissivity indices β in the range 0.6-2.2. We compare the SMBB model with the broken emissivity law modified blackbody (BMBB) and the two modified blackbody (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and β and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that β correlates with the stellar mass surface density (R=0.62) and anticorrelates with the HI mass fraction (MHI/M*, R=-0.65), whereas the dust temperature correlates strongly with the star formation rate normalized by the dust mass (R=0.73). These relations can be used to estimate T and β in galaxies with insufficient photometric data available to measure them directly through SED fitting. Description: The 192 galaxies in the JINGLE sample have stellar masses in the range logM*/M=9-11.3 and are in the redshift range 0.01<z<0.05. The targets were selected from the H-ATLAS survey (Eales et al. 2010PASP..122..499E 2010PASP..122..499E; Maddox et al. 2018ApJS..236...30M 2018ApJS..236...30M, Cat. J/ApJS/236/30) with the requirement to have a detection ≥3σ in the 250 and 350µm SPIRE bands. Additionally, they have been selected to have a flat logarithmic stellar mass distribution. Due to these requirements, they are mainly main-sequence star-forming galaxies with -1.5<logSFR<1.5[M/yr]. A detailed description of the selection criteria is provided in Saintonge et al. (2018MNRAS.481.3497S 2018MNRAS.481.3497S, Cat. J/MNRAS/481/3497). Most of the JINGLE objects are late-type galaxies, with only seven classified as early-type galaxies. A detailed description of the JINGLE photometric data set is given in Smith et al. (2019MNRAS.486.4166S 2019MNRAS.486.4166S, Cat. J/MNRAS/486/4166) and De Looze et al. (2020MNRAS.496.3668D 2020MNRAS.496.3668D). To describe the far-infrared and sub-millimetre SED we adopt the three models employed by Gordon et al. (2014ApJ...797...85G 2014ApJ...797...85G) for the SED fit of the Magellanic Clouds: single modified blackbody (SMBB), broken emissivity law modified blackbody (BMBB), and two modified blackbody (TMBB). The results of the hierarchical fit using the SMBB, BMBB and TMBB models are given in Tables E1, E2 and E3 respectively. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablee1.dat 60 192 Result parameters from the hierarchical SED fitting using the SMBB model tablee2.dat 83 192 Result parameters from the hierarchical SED fitting using the BMBB model tablee3.dat 81 192 Result parameters from the hierarchical SED fitting using the TMBB model tablee4.dat 89 35 Results of the analysis of the correlation between dust emissivity index β and combinations of other galaxy properties tablee5.dat 90 35 Results of the analysis of the correlation between dust temperature Tdust and combinations of other galaxy properties -------------------------------------------------------------------------------- See also: J/ApJS/236/30 : Herschel-ATLAS (H-ATLAS) DR2 (Maddox+, 2018) Byte-by-byte Description of file: tablee1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- ID [0/192] JINGLE ID 5- 23 A19 --- Name SDSS name (JHHDDSS.ss+DDMMSS.s) 25- 28 F4.2 [Msun] logMc Logarithm of dust mass from the SMBB model 30- 33 F4.2 [Msun] e_logMc Error on logMc 35- 39 F5.2 K Tc Dust temperature from the SMBB model model 41- 44 F4.2 K e_Tc Error on Tc 46- 49 F4.2 --- betac Emissivity index from the SMBB model 51- 54 F4.2 --- e_betac Error on betac 56- 60 F5.2 --- lnL Natural logarithm of the likelihood of the SMBB model fit -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablee2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- ID [0/192] JINGLE ID 5- 23 A19 --- Name SDSS name (JHHDDSS.ss+DDMMSS.s) 25- 28 F4.2 [Msun] logMc Logarithm of dust mass from the BMBB model 30- 33 F4.2 [Msun] e_logMc Error on logMc 35- 39 F5.2 K Tc Dust temperature from the BMBB model 41- 44 F4.2 K e_Tc Error on Tc 46- 49 F4.2 --- beta1 Emissivity index (for wavelengths <λbreak) from the BMBB model 51- 54 F4.2 --- e_beta1 Error on beta1 56- 59 F4.2 --- beta2 Emissivity index (for wavelengths >λbreak) from the BMBB model 61- 64 F4.2 --- e_beta2 Error on beta2 66- 71 F6.2 um lambdab Wavelength of the break (λbreak) from the BMBB model 73- 77 F5.2 um e_lambdab Error on lambdab 79- 83 F5.2 --- lnL Natural logarithm of the likelihood of the BMBB model fit -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablee3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- ID [0/192] JINGLE ID 5- 23 A19 --- Name SDSS name (JHHDDSS.ss+DDMMSS.s) 25- 28 F4.2 [Msun] logMc Logarithm of the dust mass of the cold component from the TMBB model 30- 33 F4.2 [Msun] e_logMc Error on logMc 35- 39 F5.2 K Tc Dust temperature of the cold component from the TMBB model 41- 44 F4.2 K e_Tc Error on Tc 46- 49 F4.2 --- betac Emissivity index of the cold component from the TMBB model (1) 51- 54 F4.2 --- e_betac Error on betac 56- 59 F4.2 [Msun] logMw Logarithm of the dust mass of the warm component from the TMBB model 61- 64 F4.2 [Msun] e_logMw Error on logMw 66- 70 F5.2 K Tw Dust temperature of the warm component from the TMBB model 72- 75 F4.2 K e_Tw Error on Tw 77- 81 F5.2 --- lnL Natural logarithm of the likelihood of the TMBB model fit -------------------------------------------------------------------------------- Note (1): The emissivity index of the warm component has been fixed to βw=1.5 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablee4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 I1 --- Nparam [2/3] Number of parameters considered for the correlation analysis between β and other properties 3- 6 F4.2 --- alogM* ? Multiplicative coefficient for logM* of the best polynomial expression to estimate β (1) 8- 11 F4.2 --- e_alogM* ? Error on alogM* 13- 17 F5.2 --- alogSFR ? Multiplicative coefficient for logSFR of the best polynomial expression to estimate β (1) 19- 22 F4.2 --- e_alogSFR ? Error on alogSFR 24- 28 F5.2 --- alogarea ? Multiplicative coefficient for logarea of the best polynomial expression to estimate β (1) 30- 33 F4.2 --- e_alogarea ? Error on alogarea 35- 38 F4.2 --- ametal ? Multiplicative coefficient for 12+log(O/H) of the best polynomial expression to estimate β (1) 40- 43 F4.2 --- e_ametal ? Error on ametal 45- 49 F5.2 --- alogMd ? Multiplicative coefficient for logMdust of the best polynomial expression to estimate β (1) 51- 54 F4.2 --- e_alogMd ? Error on alogMd 56- 60 F5.2 --- alogMHI ? Multiplicative coefficient for logMHI of the best polynomial expression to estimate β (1) 62- 65 F4.2 --- e_alogMHI ? Error on alogMHI 67- 72 F6.2 --- inter Intercept of the best polynomial expression to estimate β (parameter b) (1) 74- 77 F4.2 --- e_inter Error on inter 79- 84 F6.2 --- BIC Bayesian Information Criterion (Schwarz, 1978AnSta...6..461S 1978AnSta...6..461S) (G1) 86- 89 F4.2 --- R Pearson correlation coefficient -------------------------------------------------------------------------------- Note (1): Coefficients aj of the best polynomial expression β(x1,...,xk)=Σj=1kajlog(xj)+b, to estimate the dust emissivity index β using combinations of two or three galaxy properties -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablee5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 I1 --- Nparam [2/3] Number of parameters considered for the correlation analysis between Tdust and other properties 3- 7 F5.2 --- alogM* ? Multiplicative coefficient for logM* of the best polynomial expression to estimate Tdust (1) 9- 12 F4.2 --- e_alogM* ? Error on alogM* 14- 17 F4.2 --- alogSFR ? Multiplicative coefficient for logSFR of the best polynomial expression to estimate Tdust (1) 19- 22 F4.2 --- e_alogSFR ? Error on alogSFR 24- 28 F5.2 --- alogarea ? Multiplicative coefficient for logarea of the best polynomial expression to estimate Tdust (1) 30- 33 F4.2 --- e_alogarea ? Error on alogarea 35- 39 F5.2 --- ametal ? Multiplicative coefficient for 12+log(O/H) of the best polynomial expression to estimate Tdust (1) 41- 44 F4.2 --- e_ametal ? Error on ametal 46- 50 F5.2 --- alogMd ? Multiplicative coefficient for logMdust of the best polynomial expression to estimate Tdust (1) 52- 55 F4.2 --- e_alogMd ? Error on alogMd 57- 61 F5.2 --- alogMHI ? Multiplicative coefficient for logMHI of the best polynomial expression to estimate Tdust (1) 63- 66 F4.2 --- e_alogMHI ? Error on alogMHI 68- 72 F5.2 --- inter Intercept of the best polynomial expression to estimate Tdust (parameter b) (1) 74- 77 F4.2 --- e_inter Error on inter 79- 85 F7.2 --- BIC Bayesian Information Criterion (Schwarz, 1978AnSta...6..461S 1978AnSta...6..461S) (G1) 87- 90 F4.2 --- R Pearson correlation coefficient -------------------------------------------------------------------------------- Note (1): Coefficients aj of the best polynomial expression Tdust(x1,...,xk)=Σj=1kajlog(xj)+b, to estimate the dust temperature using combinations of two or three galaxy properties -------------------------------------------------------------------------------- Global Notes: Note (G1): The Bayesian Information Criterion (Schwarz 1978AnSta...6..461S 1978AnSta...6..461S) is defined as : BIC=-2ln(L)+qln(m), where L is the likelihood, q is the number of free parameters of the model, and m is the number of data points (wavebands) -------------------------------------------------------------------------------- History: From electronic version of the journal References: Saintonge et al., Paper I 2018MNRAS.481.3497S 2018MNRAS.481.3497S, Cat. J/MNRAS/481/3497 Smith et al., Paper II 2019MNRAS.486.4166S 2019MNRAS.486.4166S, Cat. J/MNRAS/486/4166 De Looze et al., Paper IV 2020MNRAS.496.3668D 2020MNRAS.496.3668D
(End) Ana Fiallos [CDS] 17-Jan-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line