J/MNRAS/494/1724   Effect of surface gravity on line-depth ratios  (Jian+, 2020)

The effect of surface gravity on line-depth ratios in the wavelength range 0.97-1.32µm. Jian M., Taniguchi D., Matsunaga N., Kobayashi N., Ikeda Y., Yasui C., Kondo S., Sameshima H., Hamano S., Fukue K., Arai A., Otsubo S., Kawakita H. <Mon. Not. R. Astron. Soc., 494, 1724-1734 (2020)> =2020MNRAS.494.1724J 2020MNRAS.494.1724J (SIMBAD/NED BibCode)
ADC_Keywords: Stars, dwarfs ; Stars, giant ; Stars, supergiant ; Effective temperatures ; Abundances, [Fe/H] ; Spectra, infrared Keywords: techniques: spectroscopic - stars: fundamental parameters - supergiants - infrared: stars Abstract: A line-depth ratio (LDR) of two spectral lines with different excitation potentials is expected to be correlated with the effective temperature (Teff). It is possible to determine Teff of a star with a precision of tens of Kelvin if dozens or hundreds of tight LDR-Teff relations can be used. Most of the previous studies on the LDR method were limited to optical wavelengths, but Taniguchi and collaborators reported 81 LDR relations in the YJ band, 0.97-1.32µm, in 2018. However, with their sample of only 10 giants, it was impossible to account for the effects of surface gravity and metallicity on the LDRs well. Here, we investigate the gravity effect based on YJ-band spectra of 63 stars including dwarfs, giants, and supergiants observed with the WINERED spectrograph. We found that some LDR-Teff relations show clear offsets between the sequence of dwarfs and those of giants/supergiants. The difference between the ionization potentials of the elements considered in each line pair and the corresponding difference in the depths can, at least partly, explain the dependency of the LDR on the surface gravity. In order to expand the stellar parameter ranges that the LDR method can cover with high precision, we obtained new sets of LDR-Teff relations for solar-metal G0-K4 dwarfs and F7-K5 supergiants, respectively. The typical precision that can be achieved with our relations is 10-30K for both dwarfs and supergiants. Description: We use the YJ-band spectra of 20 dwarfs, 25 giants, and 18 supergiants taken with WINERED. They were observed with the WIDE-mode giving the resolution of around 28000. The spectra between 0.91 and 1.35µm are covered with 20 echelle orders (from 42nd to 61st). The observations were carried out with the 1.3m Araki Telescope at Koyama Observatory, Kyoto Sangyo University in Japan from July 2015 to May 2016. A part of the spectra of giants and supergiants were used in Matsunaga et al. (2020ApJS..246...10M 2020ApJS..246...10M) to identify absorption lines of neutron-capture elements. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 52 20 Stellar parameters of the dwarfs in our sample table2.dat 50 25 Stellar parameters of the giants in our sample table3.dat 50 18 Stellar parameters of the supergiants in our sample table4.dat 166 60 The offsets, ΔlogLDR, between the LDR-Teff relations of the dwarf-supergiant, dwarf-giant, and giant-supergiant pairs table6.dat 164 38 Line pairs and their LDR-Teff relations for dwarfs table7.dat 163 69 Line pairs and their LDR-Teff relations for supergiants -------------------------------------------------------------------------------- See also: J/A+A/411/559 : Effective temperature for 181 F-K dwarfs (Kovtyukh+, 2003) J/A+A/427/933 : Precise temperature of F-K field dwarfs (Kovtyukh+, 2004) J/AJ/141/90 : SEGUE stellar parameter pipeline. V. (Lee+, 2011) J/ApJ/785/94 : Lithium abundances of a large sample of red giants (Liu+, 2014) J/A+A/531/A165 : MILES atmospheric parameters (Prugniel+, 2011) J/A+A/580/A24 : Abundances in dwarfs, subgiants, and giants (da Silva+, 2015) J/AJ/147/137 : Atmospheric parameters in luminous stars (Luck, 2014) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Star name (HDNNNNNN) 10- 13 I4 K Teff Effective temperature 15- 18 F4.1 K e_Teff Error on Teff 20 I1 --- r_Teff Reference for Teff (1) 22- 26 F5.2 [-] [Fe/H] Fe/H abundance ratio 28- 31 F4.2 [cm/s2] logg Surface gravity 33 I1 --- Ref Reference for [Fe/H] and logg (1) 35- 37 I3 --- S/No Signal to noise ratio of the object 39- 41 I3 --- S/Nt Signal to noise ratio of the telluric standard 43- 52 A10 "Y:M:D" Date Observation date -------------------------------------------------------------------------------- Note (1): Reference as follows: 1 = Kovtyukh et al. (2003A&A...411..559K 2003A&A...411..559K, Cat. J/A+A/411/559) 2 = Kovtyukh et al. (2004A&A...427..933K 2004A&A...427..933K, Cat. J/A+A/427/933) 3 = Lee et al. (2011AJ....141...90L 2011AJ....141...90L, Cat. J/AJ/141/90) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Star name (HDNNNNNN) 10- 13 I4 K Teff Effective temperature 15- 18 F4.1 K e_Teff Error on Teff 20- 24 F5.2 [-] [Fe/H] Fe/H abundance ratio 26- 29 F4.2 [cm/s2] logg Surface gravity 31 I1 --- Ref [1/4] Reference for [Fe/H] and logg (1) 33- 35 I3 --- S/No Signal to noise ratio of the object 37- 39 I3 --- S/Nt Signal to noise ratio of the telluric standard 41- 50 A10 "Y:M:D" Date Observation date -------------------------------------------------------------------------------- Note (1): Reference as follows: 1 = Park et al. (2013AJ....146...73P 2013AJ....146...73P) 2 = Liu et al. (2014ApJ...785...94L 2014ApJ...785...94L, Cat. J/ApJ/785/94) 3 = Prugniel, Vauglin & Koleva (2011A&A...531A.165P 2011A&A...531A.165P, Cat. J/A+A/531/A165) 4 = da Silva, Milone & Rocha-Pinto (2015A&A...580A..24D 2015A&A...580A..24D, Cat. J/A+A/580/A24) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Star name (HDNNNNNN) 10- 13 I4 K Teff Effective temperature 15- 18 F4.1 K e_Teff Error on Teff 20- 24 F5.2 [-] [Fe/H] Fe/H abundance ratio 26- 29 F4.2 [cm/s2] logg Surface gravity 31 I1 --- Ref [1/3] Reference for [Fe/H] and logg (1) 33- 35 I3 --- S/No Signal to noise ratio of the object 37- 39 I3 --- S/Nt Signal to noise ratio of the telluric standard 41- 50 A10 "Y:M:D" Date Observation date -------------------------------------------------------------------------------- Note (1): Reference as follows: 1 = Luck (2014AJ....147..137L 2014AJ....147..137L, Cat. J/AJ/147/137) 2 = Liu (2014ApJ...785...94L 2014ApJ...785...94L, Cat. J/ApJ/785/94) 3 = Lee et al. (2011AJ....141...90L 2011AJ....141...90L, Cat. J/AJ/141/90) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- ID Line pair ID (1) 5- 8 A4 --- Xlow Low excitation line 10- 13 A4 --- Xhigh High excitation line 15- 35 F21.18 eV DX Difference of the ionization potentials 37- 57 F21.18 --- DlogLDRds ? Offset between the LDR-Teff relations of the dwarf-supergiant pair (2) 59- 78 F20.18 --- e_DlogLDRds ? Error on DlogLDRds 80- 100 F21.18 --- DlogLDRdg ? Offset between the LDR-Teff relations of the dwarf-giant pair (2) 102- 121 F20.18 --- e_DlogLDRdg ? Error on DlogLDRdg 123- 145 F23.20 --- DlogLDRgs ? Offset between the LDR-Teff relations of the giant-supergiant pair (3) 147- 166 F20.18 --- e_DlogLDRgs ? Error on DlogLDRgs -------------------------------------------------------------------------------- Note (1): The line pair IDs are adopted from the Tables 4 and 5 in Taniguchi et al. (2018MNRAS.473.4993T 2018MNRAS.473.4993T) and prefixed by 'T' Note (2): The offsets were measured at Teff=5000K for the ds and dg pairs Note (3): The offsets were measured at Teff=4500K for the gs pair -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- ID Line pair ID from our set of dwarf LDR-Teff relations 5- 6 I2 --- Order Spectral order 8- 9 I2 --- NXlow Atomic number of the low excitation line 11- 14 A4 --- Xlow Low excitation line 16- 25 F10.4 0.1nm lambdalow Wavelenght of the low-excitation line 27- 32 F6.4 eV EPlow Excitation potential of the low-excitation line 34- 35 I2 --- NXhigh Atomic number of the high excitation line 37- 40 A4 --- Xhigh High excitation line 42- 51 F10.4 0.1nm lambdahigh Wavelenght of the high-excitation line 53- 58 F6.4 eV EPhigh Excitation potential of the high-excitation line 60- 78 F19.13 K a Slope of the LDR-Teff relation (Teff=alogr+b) 80- 97 F18.13 K b Intercept of the LDR-Teff relation (Teff=alogr+b) 99- 117 F19.15 K sigma Residual of the fitted LDR-Teff relation 119- 120 I2 --- N Number of stars used for calibrating the relation 122- 142 F21.18 [-] logLDRmin LogLDR range used for calibrating the relation (minimum value) 144- 164 F21.18 [-] logLDRmax LogLDR range used for calibrating the relation (maximum value) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- ID Line pair ID from our set of dwarf LDR-Teff relations 5- 6 I2 --- Order Spectral order 8- 9 I2 --- NXlow Atomic number of the low excitation line 11- 14 A4 --- Xlow Low excitation line 16- 25 F10.4 0.1nm lambdalow Wavelenght of the low-excitation line 27- 32 F6.4 eV EPlow Excitation potential of the low-excitation line 34- 35 I2 --- NXhigh Atomic number of the high excitation line 37- 40 A4 --- Xhigh High excitation line 42- 51 F10.4 0.1nm lambdahigh Wavelenght of the high-excitation line 53- 58 F6.4 eV EPhigh Excitation potential of the high-excitation line 60- 78 F19.13 K a Slope of the LDR-Teff relation (Teff=alogr+b) 80- 97 F18.13 K b Intercept of the LDR-Teff relation (Teff=alogr+b) 99- 116 F18.14 K sigma Residual of the fitted LDR-Teff relation 118- 119 I2 --- N Number of stars used for calibrating the relation 121- 141 F21.18 [-] logLDRmin LogLDR range used for calibrating the relation (minimum value) 143- 163 F21.18 [-] logLDRmax LogLDR range used for calibrating the relation (maximum value) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Ana Fiallos [CDS] 25-May-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line